[1] P. Crook, Cobalt and Cobalt Alloys, ASM Handbook, Properties Selection of Nonferrous Alloy and Special-Purpose Material, ASM International, USA, 1990, pp. 1416-1421.
[2] R.V. Marrey, R. Burgermeister, R.B. Grishaber, R.O. Ritchie, Fatigue and life prediction for cobalt-chromium stents: A fracture mechanics analysis, Biomaterials, 27(9) (2006) 1988-2000.
[3] ASTM F90, Wrought cobalt-20chromium-15tungsten-10nickel alloy surgical implant application (UNS R30605), ASTM International, 2014.
[4] ASTM F1091, Wrought cobalt-20chromium-15tungsten-10nickel alloy surgical fixation wire (UNS R30605), ASTM International, 2002.
[5] L.M. de Andrade, C. Paternoster, V. Montaño-Machado, G. Barucca, M. Sikora-Jasinska, R. Tolouei, S. Turgeon, D. Mantovani, Surface modification of L605 by oxygen plasma immersion ion implantation, MRS Communications, 8(4) (2018) 1404-1412.
[6] P.A.G. Rashidi, H. Arabi, S.M. Abbbasi, Effect of cold-rolling on mechanical properties of Haynes 25 cobalt-based superalloy, Journal of Metallurgical and Materials Engineering, 23(1) (2017) 31-45.
[7] S.M. Arab, A. Haghighi M. Khajepour, Y. Jalalizadeh, M.M. Tavallayi, Conjoint influence of heat treatment, hot deformation and cold working on the microstructure and mechanical response of a Co-based superalloy, Iranian Journal of Materials Forming, 8(3) (2021) 34-45.
[8] K. Salonitis, Grind hardening process, Cham, Heidelberg: Springer International Publishing, New York, 2015.
[9] V. Schulze, Modern mechanical surface treatment: states, stability, effects, John Wiley & Sons, 2006.
[10] L.N. López de Lacalle, A. Lamikiz, J. A. Sánchez, J.L. Arana, The effect of ball burnishing on heat-treated steel and Inconel 718 milled surfaces, The International Journal of Advanced Manufacturing Technologies, 32 (2007) 958-968.
[11] J. Huuki, S.V.A. Laakso, Surface improvement of shafts by the diamond burnishing and ultrasonic burnishing techniques, International Journal of Machining and Machinability of Materials, 19(3) (2017) 246-259.
[12] V. Schulze, F. Bleicher, P. Groche, Y.B. Guo, Y.S. Pyun, Surface modification by machine hammer peening and burnishing, Cirp Annals, 65(2) (2016) 809-832.
[13] S. Yanga, D.A. Puleob, O.W. Dillon, I.S. Jawahir, Surface layer modifications in Co-Cr-Mo biomedical alloy, Procedia Engineering, 19 (2011) 383-388.
[14] F. Shahriyari, R. Taghiabadi, A. Razaghian, M. Mahmoudi, Effect of friction hardening on the surface mechanical properties and tribological behavior of biocompatible Ti-6Al-4V alloy, Journal of Manufacturing Processes, 31 (2018).
[15] A.V. Makarov, L.G. Korshunov, I.Y. Malygina, I.L. Solodova, Raising the heat and wear resistances of hardened carbon steels by friction strengthening treatment, Metal Science and Heat Treatment, 49 (2007) 150-156.
[16] A.V. Makarov, R.A. Savrai, N.A. Pozdejev, S.V. Smirnov, D.I. Vichuzhanin, L.G. Korshunov, I.Y. Malygina, Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional under static and cyclic tension, Surface and Coating Technology, 205(3) (2010) 841-852.
[17] A.V. Makarov, P.A. Skorynina, A.S. Yurovskikh, A.L. Osintseva, Effect of the technological conditions of frictional treatment on the structure, phase composition and hardening of metastable austenitic steel, AIP Conference Proceedings, 1785(1) (2016).
[18] A. Khaksaran, R. Taghiabadi, M. Jafarzadegan, Tribological properties of surface friction hardened AISI 316L steel, Transactions of the Indian Institute of Metals, 74(8) (2021) 1979-1989.
[19] S. Yu, Y. Wan, C. Liu, Z. Chen, X. Zhou, Twinning-induced abnormal strain rate sensitivity and indentation creep behavior in nanocrystalline Mg alloy. Materials, 14(22) (2021) 7104.
[20] G.E. Totten, ASM handbook: Volume 18, Friction, lubrication and wear technology, ASM International, Cleveland, 1992.
[21] A.H. Almasri, G.Z. Voyiadjis, Effect of strain rate on the dynamic hardness in metals, Journal of Engineering Materials and Technology, 129(4) (2007) 505-512.
[22] V.M. Heydari, M. Sedighi, M. Mondali, Mechanical properties and microstructural evaluation of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding, International Journal of Advanced Design and Manufacturing Technology, 9(4) (2016) 13-22.
[23] T.B. Tavares, D.G. Rudrigues, D.B. Santos, Effect of warm rolling and annealing on microstructure, texture, and mechanical properties of a 2205 duplex stainless steel, Steel Research International, 91(4) (2020) 1900543.
[24] F. A. Mohamed, A dislocation model for the minimum grain size obtainable by milling, Acta Materialia, 51(14) (2003) 4107-4119.
[25] C. Perrin, W.M. Rainforth, Work hardening behavior at the worn surface of Al−Cu and Al−Si alloys. Wear, 203 (1997) 171-179.
[26] J. Favre, Recrystallization of L-605 cobalt superalloy during hot-working process, Doctoral dissertation, INSA de Lyon; TÅhoku Daigaku (Sendai, Japan), 2012.
[27] R. Wang, R. Wang, D. Chen, G. Qin, E. Zhang, Novel CoCrWNi alloys with Cu addition: Microstructure, mechanical properties, corrosion properties and biocompatibility, Journal of Alloys and Compounds, 824 (2020) 153924.
[28] B.S. Lee, H. Matsumoto, A. Chiba, Fractures in tensile deformation of biomedical Co–Cr–Mo–N alloys, Materials Letters, 65(5) (2011) 843-846.
[29] Z. Zhu, L. Chen, Effect of annealing on microstructure and mechanical properties of biomedical hot-rolled Co-Cr-W-Ni alloy, Materials Research Express, 6(12) (2019) 126511.
[30] D.L. Klarstrom, Wrought cobalt-base superalloys, Journal of Materials Engineering and Performance, 2 (1993) 523-530.
[31] H. Fujita, S. Ueda, Stacking faults and f.c.c. (γ) → h.c.p. (e) transformation in 188-type stainless steel, Acta Metallurgica, 20(5) (1972) 759-767.
[32] H.M. Tawancy, V.R. Ishwar, B.E. Lewis, On the fcc → hcp transformation in a cobalt-base superalloy (Haynes alloy No. 25), Journal of Materials Science Letters, 5(3) (1986) 337-341.
[33] Y. Koizumi, S. Suzuki, K. Yamanaka, B.S. Lee, K. Sato, Y. Li, S. Kurosu, H. Matsumoto, A. Chiba, Strain-induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy, Acta Materialia, 61(5) (2013) 1648-1661.
[34] M. Knezevic, J.S. Carpenter, M.L. Lovato, R.J. McCabe, Deformation behavior of the cobalt-based superalloy Haynes 25: Experimental characterization and crystal plasticity modeling, Acta Materialia, 63 (2014) 162-168.
[35] Y.S. Mao, L. Wang, K.M. Chen, S.Q. Wang, X.H. Cui, Tribo-layer and its role in dry sliding wear of Ti–6Al–4V alloy, Wear, 297(1-2) (2016) 1032-1039.
[36] T. Vitu, A. Escudeiro, T. Polcar, A. Cavaleiro, Sliding properties of Zr-DLC coatings: The effect of tribolayer formation. Surface and Coatings Technology, 258 (2014) 734-745.
[37] S. Pouladvand, R. Taghiabadi, F. Shahriyari, Investigation of the tribological properties of AlxSi-1.2Fe(Mn) (x=5-13 wt.%) alloys. Journal of Materials Engineering and Performance, 27(7) (2018) 3323-3334.
[38] Z. Nouri, R. Taghiabadi, Tribological properties improvement of conventionally-cast Al-8.5Fe-1.3V-1.7Si alloy by multi-pass friction stir processing, Transactions of Nonferrous Metals Society of China, 31(5) (2021) 1262-1275.
[39] M. Fekri Soustani, R. Taghiabadi, M. Jafarzadegan, F. Shahriyari, A. Rahmani, Improving the tribological properties of Al-7Fe-5Ni alloys via friction stir processing, Journal of Tribology, 141(12) (2019) 121602.
[40] X. Tong, T. Shen, X. Zhou, J. Zeng, J. Tao, K. Munir, Y. Li, S. Huang, X. Wu, J. Ma, J. Lin, C. Wen, Biodegradable Zn–Cu–Li alloys with ultrahigh strength, ductility, antibacterial ability, cytocompatibility, and suitable degradation rate for potential bone-implant applications, Smart Materials in Manufacturing, 1 (2023) 100012.
[41] S.J. Lee, Y.K. Lee, A. Soon, The austenite/e martensite interface: A first-principles investigation of the
fcc Fe (111)/hcp Fe (0001) system. Applied Surface Science, 258(24) (2012) 9977-9981.
[42] H. Hirani, Fundamentals of engineering tribology with applications, Cambridge University Press, Delhi, India, 2016.