[1] A.C. McLaren, C.S. Estes, Orthopaedic applications of injectable biomaterials, In Injectable biomaterials Woodhead Publishing, 2011, pp. 202-226.
[2] A. Nabhan, M. Taha, N.M. Ghazaly, Filler loading effect of Al2O3/TiO2 nanoparticles on physical and mechanical characteristics of dental base composite (PMMA), Polymer Testing, 117 (2023) 107848.
[3] K.T. Chu, Y. Oshida, E.B. Hancock, M.J. Kowolik, T. Barco, S.L. Zunt, Bio-medical Materials and Engineering, 14(1) (2004) 87-105.
[4] H. Itokawa, T. Hiraide, M. Moriya, M. Fujimoto, G. Nagashima, R. Suzuki, T. Fujimoto, A 12 month in vivo study on the response of bone to a hydroxyapatite-polymethylmethacrylate cranioplasty composite, Biomaterials, 28(33) (2007) 4922-4927.
[5] S. Ramakrishna, J. Mayer, E. Wintermantel, K.W. Leong, Biomedical applications of polymer-composite materials: a review, Composites Science and Technology, 61(9) (2001) 1189-1224.
[6] J.F. Mano, R.A. Sousa, L.F. Boesel, N.M. Neves, R.L. Reis, Bioinert, biodegradable and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent developments, Composites Science and Technology, 64(6) (2004) 789-817.
[7] M. Miola, F. Barberis, A. Lagazzo, E. Vernè, PMMA composite bone cement containing bioactive and ferrimagnetic glass-ceramic particles: Effect of temperature and of the additional phase on some physical and mechanical properties, Ceramics International, 49(15) (2023) 24885-24894.
[8] A.A. Ashraf, S.M. Zebarjad, M.J. Hadianfard, The cross-linked polyvinyl alcohol/hydroxyapatite nanocomposite foam, Journal of Materials Research and Technology, 8(3) (2019) 3149-3157.
[9] W.A. Al-Taa'y, S.F. Oboudi, H. Ibraheem, M.T. Abdul Nabi, E. Yousif, Effect of Nano Sb2O3 on the dispersive optical constants of PMMA films, Journal of Chemical and Pharmaceutical Research, 8(10) (2016) 121-126.
[10] W.A. Al-Taa'y, S.F. Oboudi, E. Yousif, M. Abdul Nabi, R.M. Yusop, D. Derawi, Fabrication and characterization of nickel chloride doped PMMA films, Advances in Materials Science and Engineering, (2015) 913260.
[11] W.P.S.L. Wijesinghe, M.M.M.G.P.G. Mantilaka, T.S.E.F. Karunarathne, R.M.G. Rajapakse, Synthesis of a hydroxyapatite/poly (methyl methacrylate) nanocomposite using dolomite, Nanoscale Advances, 1(1) (2019) 86-88.
[12] C. Prahasanti, D. Setijanto, D.S. Ernawati, R.D. Ridwan, Utilization of polymethyl methacrylate and hydroxyapatite composite as biomaterial candidate for porous trabecular dental implant fixture development: a narrative review, Research Journal of Pharmacy and Technology, 15(4) (2022) 1863-1869.
[13] J.M. Aldabib, Z.A.M. Ishak, Effect of hydroxyapatite filler concentration on mechanical properties of poly (methyl methacrylate) denture base, SN Applied Sciences, 2(4) (2020) 732.
[14] K.J. Moreno, J.S. García-Miranda, C. Hernández-Navarro, F. Ruiz-Guillén, L.D. Aguilera-Camacho, R. Lesso, A. Arizmendi-Morquecho, Preparation and performance evaluation of PMMA/HA nanocomposite as bulk material, Journal of Composite Materials, 49(11), (2015) 1345-1353.
[15] P. Silva, C. Albano, R. Perera, N. Domínguez, Study of the gamma irradiation effects on the PMMA/HA and PMMA/SW, Radiation Physics and Chemistry, 79(3) (2010) 358-361.
[16] M. Ataei-Aazam, M. Safarabadi, N. Mehri Khansari, Numerical & experimental assessment of mixed-modes (I/II) fracture of PMMA/hydroxyapatite nanocomposite, Theoretical and Applied Fracture Mechanics, 123 (2023) 103737.
[17] H. Wu, G. Ma, Y. Xia, Experimental study of tensile properties of PMMA at intermediate strain rate, Materials Letters, 58(29) (2004) 3681-3685.
[18] P. Cheang, K.A. Khor, Effect of particulate morphology on the tensile behaviour of polymer–hydroxyapatite composites, Materials Science and Engineering: A, 345(1-2) (2003) 47-54.
[19] S.M. Zebarjad, S.A Sajjadi, T. Ebrahimi Sdrabadi, A Yaghmaei, B Naderi, A Study on mechanical properties of PMMA/hydroxyapatite nanocomposite, Engineering, 3(8) (2011) 795-800.
[20] D. Rentería-Zamarrón, D.A. Cortés-Hernández, L. Bretado-Aragón, W. Ortega-Lara, Mechanical properties and apatite-forming ability of PMMA bone cements, Materials & Design, 30(8) (2009) 3318-3324.
[21] M.H. Moghim, S.M. Zebarjad, Effect of strain rate on tensile properties of polyurethane/(multiwalled carbon nanotube) nanocomposite, Journal of Vinyl and Additive Technology, 22(3) (2016) 356-361.
[22] G. Lewis, Properties of acrylic bone cement: state of the art review, Journal of Biomedical Materials Research, 38(2) (1997) 155-182.
[23] J. Chen, W. Shi, C. Xiong, Mixed solvent-mediated exfoliation of graphene invoked by synergistic effect of steric hindrance and hydrogen bond for improved electrochemical performance on its polymeric composites, Electrochimica Acta, 283 (2018) 818-825.
[24] J.K. Muiruri, S. Liu, W.S. Teo, J.C.C. Yeo, W. Thitsartarn, C. He, Cavitation-crazing transition in rubber toughening of poly (lactic acid)-cellulose nanocrystal composites, Composites Science and Technology, 168 (2018) 12-19.
[25] K.P. Herrmann, V.G. Oshmyan, Theoretical study of formation of pores in elastic solids: particulate composites, rubber toughened polymers, crazing, International Journal of Solids and Structures, 39(11) (2002) 3079-3104.
[26] Y. Li, X. Sun, S. Han, A fractal crazing constitutive model of glassy polymers considering damage and toughening, Engineering Fracture Mechanics, 267 (2022) 108354.