[1] Ramezani, M., & Ripin, Z. M. (2023). An overview of enhancing the performance of medical implants with nanocomposites. Journal of Composites Science, 7(5), 199.
https://doi.org/10.3390/jcs7050199
[2] Davis, R., Singh, A., Jackson, M. J., Coelho, R. T., Prakash, D., Charalambous, C. P., Ahmed, W., Ribeiro da Silva, L. R., & Lawrence, A. A. (2022). A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. The International Journal of Advanced Manufacturing Technology, 120(3), 1473-1530.
https://doi.org/10.1007/s00170-022-08770-8
[4] Rodriguez, G. M., Bowen, J., Zelzer, M., & Stamboulis, A. (2020). Selective modification of Ti6Al4V surfaces for biomedical applications. RSC advances, 10(30), 17642-17652.
https://doi.org/10.1039/C9RA11000C
[5] Balasubramanian Gayathri, Y. K., Kumar, R. L., Ramalingam, V. V., Priyadharshini, G. S., Kumar, K. S. & Prabhu, T. R. (2022). Additive manufacturing of Ti6Al-4V alloy for biomedical applications. Journal of Bio-and Tribo-Corrosion, 8(4), 98.
https://doi.org/10.10 07/s40735-022-00700-1
[6] Gheshlaghi, H., Alimirzaloo, V., Shahbaz, M., & Amiri, A. (2023). Finite element analysis of phase distribution in forging of the two-phase Ti-6Al-4V alloy to have a hip joint implant. Iranian Journal of Materials Forming, 9(4), 26-33.
https://doi.org/10.22099/IJMF.2022.44610.1238
[7] Umar Farooq, M., Pervez Mughal, M., Ahmed, N., Ahmad Mufti, N., Al-Ahmari, A. M., & He, Y. (2020). On the investigation of surface integrity of Ti6Al4V ELI using Si-mixed electric discharge machining. Materials, 13(7), 1549.
https://doi.org/10.3390/ma13071549
[8] Gheshlaghi, H., Alimirzaloo, V., Shahbaz, M., & Amiri, A. (2022). Numerical study and optimization of the thermomechanical procedure in forging of two-phase Ti6Al-4V Alloy for artificial hip joint implant. Iranian Journal of Materials Forming, 9(3), 31-43.
https://doi.org/10.22099/IJMF.2022.43334.1219
[10] Rinaldi, S., Rotella, G., & Del Prete, A. (2021). A physically based constitutive model of microstructural evolution of Ti6Al4V hard machining under different lubri-cooling conditions. The International Journal of Advanced Manufacturing Technology, 112, 1641-1659.
https://doi.org/10.1007/s00170-020-06540-y
[11] Ali, A., Chiang, Y. W., & Santos, R. M. (2022). X-ray diffraction techniques for mineral characterization: A review for engineers of the fundamentals, applications, and research directions. Minerals, 12(2), 205.
https://doi.org/10.3390/min12020205
[12] Qazi, J. I., Rahim, J. S. A. M., Fores, F. H., Senkov, O. N., & Genc, A. (2001). Phase transformations in Ti-6Al4V-x H alloys. Metallurgical and Materials Transactions A, 32, 2453-2463.
https://doi.org/10.1007/s 11661-001-0035-8
[13] Wang, P., Chen, F. H., Eckert, J., Pilz, S., Scudino, S., & Prashanth, K. G. (2021). Microstructural evolution and mechanical properties of selective laser melted Ti-6Al4V induced by annealing treatment. Journal of Central South University, 28(4), 1068-1077.
https://doi.org/10.1 007/s11771-021-4680-3
[15] Mote, V. D., Purushotham, Y., & Dole, B. N. (2012). Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of theoretical and applied physics, 6, 1-8.
https://doi.org/ 10.1186/2251-7235-6-6
[16] Abbasi, M., Ahmadi, F., & Farzin, M. (2021). Production of ultrafine-grained titanium with suitable properties for dental implant applications by RS-ECAP process. Metals and Materials International, 27, 705-16.
https://doi.org/10.1007/s12540-020-00796-5
[17] Farshidi, M. H., Kazeminezhad, M., & Miyamoto, H. (2013). On the natural aging behavior of Aluminum 6061 alloy after severe plastic deformation. Materials Science and Engineering: A, 580, 202-208.
https://doi.org/10.1016/j.msea.2013.05.051
[18] Lütjering, G. E. R. D. (1998). Influence of processing on microstructure and mechanical properties of (α+ β) titanium alloys. Materials Science and Engineering: A, 243(1-2), 32-45.
https://doi.org/10.1016/S0921-509 3(97)00778-8