Effect of Processing Parameters on the Morphology of α-phase in Ti-6Al-4V Alloy During the Two-step Hot Deformation

Document Type : Research Paper


1 Hakim Sabzevari University

2 Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

3 Department of Materials and Polymer Engineering, Hakim Sabzevari University, Sabzevar, Iran


The morphology of the α-phase in titanium alloys considerably affected their physical and mechanical properties. In this research, the effect of applied strain and inter-pass times on the morphology of the α-phase was studied in the two-step hot deformation process. Hot compression tests were performed at 900 ºC and 0.001 s-1 while the strains in the first and second passes were set as (first cycle: 0.6 and 0.3) and (second cycle: 0.3 and 0.6) respectively, with various inter-pass times. The work softening parameter obtained from the stress-strain curves showed that the proper time for globularization of α-layers for the first pass strain of 0.6 was 240 s and for the second strain of 0.3 it was 240 and 300 s. Microstructure results indicated that the first pass strain of 0.3 and the inter-pass time of 240 s were the optimum conditions for globularization of α layers.


[1]     L. Shao, W. Li, D. Li, G. Xie, C. Zhang, C. Zhang, J. Huang, A review on combustion behavior and mechanism of Ti alloys for advanced aero-engine, J. Alloys Compd., 960 (2023) 170584. 

[2]     J. Wang, K. Wang, S. Lu, X. Li, D. OuYang, and Q. Qiu, Softening mechanism and process parameters optimization of Ti-4.2Al-0.005B titanium alloy during hot deformation, J. Mater. Res. Technol, 17 (2022) 1842–1851.

[3]     K. Prasad, H. Krishnaswamy, N. Arunachalam, “Investigations on ductility improvement and reloading yielding during stress relaxation of dual phase Ti-6Al-4V titanium alloy, J. Alloys Compd., 828 (2020) 154450.

[4]     C. N. Elias, J. H. C. Lima, R. Valiev, and M. A. Meyers, Biomedical Applications of Titanium and its Alloys, Bio. Mater. Sci. 60 (2008) 46-9. 

[5]     M. Niinomi, Biologically and Mechanically Biocompatible Titanium Alloys, Mater. Trans., 49 (2008) 2170-2178.

[6]     J. Y. Kim, K.-T. Park, I. O. Shim, S. H. Hong, Globularization Behavior of ELI Grade Ti-6Al-4V Alloy during Non-Isothermal Multi-Step Forging, Mater. Trans., 49 (2008) 215–223.

[7]     J. Luo, M. Li, H. Li, W. Yu, Effect of the strain on the deformation behavior of isothermally compressed Ti-6Al-4V alloy, Mater. Sci. Eng. A., 505 (2009) 88–95.

[8]     C. H. Park, K.-T. Park, D. H. Shin, C. S. Lee, Microstructural mechanisms during dynamic globularization of Ti-6Al-4V Alloy, Mater. Trans., 49 (2008) 2196–2200.

[9]     R. Ding, Z. X. Guo, A. Wilson, Microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing, Mater. Sci. Eng. A, 327 (2002) 233–245.

[10]  G. Lütjering, J. C. Williams, Titanium, Springer, vol. 2, (2007).

[11]  J. Zhang, H. Li, and M. Zhan, Review on globularization of titanium alloy with lamellar colony, Manuf. Rev., 18 (2020) 1-14.

[12]  J. B. A. Dutta, A. Kumar, T. Raghu, Flow behaviour of Ti-6Al-4V subjected to Step temperature isothermal forging, Int. J. Technol. Adv. Eng., 2 (2012) 321–325.

[13]  S. V. Zherebtsov, G. A. Salishchev, R. M. Galeyev, O. R. Valiakhmetov, S. Yu. Mironov, S. L. Semiatin, Production of submicrocrystalline structure in large-scale Ti-6Al-4V billet by warm severe deformation processing, Scr. Mater., 51 (2004) 1147–1151.

[14]  J. Y. Kim, I. O. Shim, S. H. Hong, Effect of Initial Lamellar Structure on Globularization of Hot Multi-Forged ELI Grade Ti-6Al-4V Alloy, Mater. Sci. Forum., 558–559 (2007) 529–532.

[15]  S. L. Semiatin, N. Stefansson, R. D. Doherty, Prediction of the kinetics of static globularization of Ti-6Al-4V, Metall. Mater. Trans. A, 36 (2005) 1372–1376.

[16]  F. Warchomicka, C. Poletti, M. Stockinger, T. Henke, Microstructure evolution during hot deformation of Ti-6Al-4V double cone specimens, Int. J. Mater. Form., 3 (2010) 215–218.

[17]  L. He, A. Dehghan-Manshadi, R. J. Dippenaar, The evolution of microstructure of Ti-6Al-4V alloy during concurrent hot deformation and phase transformation, Mater. Sci. Eng. A, 549 (2012) 163–167.

[18]  Z. X. Zhang, S. J. Qu, A. H. Feng, J. Shen, D. L. Chen, Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure, J. Alloys Compd., 718, (2017) 170-181.

[19]  M. Motyka, J. Sieniawski, W. Ziaja, Microstructural aspects of superplasticity in Ti-6Al-4V alloy, Mater. Sci. Eng. A, 599 (2014) 57–63.

[20]  J. T. Yeom, J. H. Kim, N. Y. Kim, N. K. Park, C. S. Lee, Characterization of dnamic globularization behavior during hot working of Ti-6Al-4V alloy, Adv. Mater. Res., 26–28 (2007) 1033–1036.

[21]  F. Zarghani, G. R. Ebrahimi, J. Taheri, H. R. Ezatpour, Hot compressive deformation behavior of Ti-8Al-1Mo-1 V titanium alloy at elevated temperatures : Focus on flow behavior , constitutive modeling , and processing maps, Mater. Today Commun., 37 (2023) 107235.

[22]  M. Arulselvan and G. Ganesan, A study on compression test on Ti-6Al-4V in various strain rates and various temperature, Int. J. Rec. Technol. Eng. (IJRTE), 2 (2013) 47-51.

[23]  P. Honarmandi, M. Aghaie-Khafri, Hot deformation behavior of Ti–6Al–4V alloy in β phase field and low strain Rate, Metallogr. Microstruct. Anal., 2 (2012) 13–20.

[24]  J. Luo, M. Li, W. Yu, H. Li, Effect of the strain on processing maps of titanium alloys in isothermal compression, Mater. Sci. Eng. A, 504 (2009) 90–98.

[25]  P. C. Collins, B. Welk, T. Searles, J. Tiley, J. C. Russ, H. L. Fraser, Development of methods for the quantification of microstructural features in α + β-processed α/β titanium alloys, Mater. Sci. Eng. A, 508 (2009) 174–182.

[26]  W. Yu, M. Li, J. Luo, Effect of processing parameters on microstructure and mechanical properties in high temperature deformation of Ti-6Al-4V Alloy, Rare Met. Mater. Eng., 38 (2009) 19–24.

[27]  [27] W. S. Lee, C. F. Lin, Plastic deformation and fracture behaviour of Ti6Al4V alloy loaded with high strain rate under various temperatures. Mater. Sci. Eng. A., 241 (1998) 48-59.

[28]  M. A. Shafaat, H. Omidvar, B. Fallah, Prediction of hot compression flow curves of Ti-6Al-4V alloy in α+β phase region, Mater. Des. , 32 (2011) 4689–4695.

[29]  S. J. Mirahmadi, M. Hamedi, M. Habibi Parsa, Investigation of microstructural uniformity during isothermal forging of Ti-6Al-4V, J. Mater. Eng. Perform., 23 (2014), 4411–4420.

[30]   C. H. Park, Y. G. Ko, J. W. Park, C. S. Lee, Enhanced superplasticity utilizing dynamic globularization of Ti-6Al-4V alloy, Mater. Sci. Eng. A, 496 (2008) 150–158.

[31]  S. Nemat-Nasser, W. G. Guo, V. F. Nesterenko, S. S. Indrakanti, Y. B. Gu, Dynamic response of conventional and hot isostatically pressed Ti-6Al-4V alloys: Experiments and modeling, Mech. Mater., 33 (2001) 425–439.

[32]  H. Song, S. Zhang, M. Cheng, Dynamic globularization prediction during cogging process of large size TC11 titanium alloy billet with lamellar structure, Def. Technol., 10 (2014) 40–46.

[33]  R. M. Poths, B. P. Wynne, W. M. Rainforth, J. H. Beynon, G. Angella, S. L. Semiatin, Effect   of strain reversal on the dynamic spheroidization of Ti-6Al-4V during hot deformation, Metall. Mater. Trans. A, 35 (2004) 2993–3001.

[34]  H. Monajati, K. Taheri, M. Jahazi, S. Yue, Deformation characteristics of isothermally forged UDIMET 720 nickel-base superalloy, Metall. Mater. Trans. A, 36 (2005), 895–905.

[35]   C. Lin, G. Pang, Y. Jiang, X. Liu, X. Zhang, C. Chen, Hot compressive deformation behavior and microstructure evolution of a Ti-55511 alloy with basket-weave microstructures, Vac., 169 (2019) 108878.

[36]  Y. C. Lin, Y. Xiao, Y. Jiang, G. Pang, H. Li, Materials Science & Engineering A Spheroidization and dynamic recrystallization mechanisms of Ti-55511 alloy with bimodal microstructures during hot compression in α þ β region, Mater. Sci. Eng. A., 782 (2020) 139282.

[37]  G. R. Ebrahimi, F. Zarghani, H. R. Ezatpour, M. J. Taheri, “Hot working behaviour of Ti – 8Al – 1Mo – 1V alloy through the hot compression test, Mater. Sci. Technol., (2024). 

[38]  M. Cabibbo, A. Di Salvia, S. Zherebtsov, Loss of coherency at interphase α/β boundary in Ti-6Al-4V alloys during deformation at 800°C, La Metall. Italiana, (2012) 29–36.

[39]  H. Matsumoto, L. Bin, S. H. Lee, Y. Li, Y. Ono, A. Chiba, Frequent occurrence of discontinuous dynamic recrystallization in Ti-6Al-4V Alloy with   martensite starting microstructure, Metall. Mater. Trans. A., 44 (2012) 3245–3260, 

[40]  I. Weiss, F. H. Froes, D. Eylon, G. E. Welsch, Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing, Metall. Trans. A, 17 (1986) 1935–1947.

[41]  T. Seshacharyulu, S. C. Medeiros, W. G. Frazier, Y.V.R.K. Prasad, Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure, Mater. Sci. Eng. A, 325 (2002) 112–125.

[42]  S. Semiatin, V. Seetharaman, I. Weiss, Flow behavior and globularization kinetics during hot working of Ti–6Al–4V with a colony alpha microstructure, Mater. Sci. Eng. A, 263 (1999) 257–271.

[43]  Crook, Cobalt and Cobalt Alloys, ASM Handbook, Properties Selection of Nonferrous Alloy and Special-Purpose Material, ASM International USA, 1990, pp. 1416-1421.