[1] Rezaei Ashtiani, H., & Mohammadi, M. (2022). Prediction of hot deformation behavior of 304 stainless steel using Johnson-Cook equation. Iranian Journal of Manufacturing Engineering, 8(12), 34-43.
[5] Humphreys, F. J. & Hatherly, M. (1996). Recrystallization and related annealing phenomena, first ed. Pergamon. Oxford.
[7] Mandal, S., Sivaprasad, P. V., Venugopal, S., & Murthy, K. P. N. (2006). Constitutive flow behaviour of austenitic stainless steels under hot deformation: artificial neural network modelling to understand, evaluate and predict. Modelling and Simulation in Materials Science and Engineering, 14(6), 1053.
https://doi.org/10.1088/0965-0393/14/6/012
[8] Rusinek, A., Rodríguez-Martínez, J. A., & Arias, A. (2010). A thermo-viscoplastic constitutive model for FCC metals with application to OFHC copper. International Journal of Mechanical Sciences, 52(2), 120-135.
https://doi.org/10.1016/j.ijmecsci.2009.07.001
[9] Yadav, P., Rigo, O., Arvieu, C., & Lacoste, E. (2023). Thermomechanical response of additively manufactured inconel 718 during hot torsion tests. The International Journal of Advanced Manufacturing Technology, 128(9-10), 4339-4355.
https://doi.org/10.21203/rs.3.rs-2640287/v1
[10] Yang, Y., Guo, J., Wang, C., Jiang, W., Zhang, Z., Wang, Q., & Zhang, X. (2023). Evolution of microstructure and texture of AZ80 magnesium alloy under hot torsion with constant decreasing temperature rate. Journal of Magnesium and Alloys.
https://doi.org/10.1016/j.jma.2023.01.018
[11] Kiss, I., & Alexa, V. (2020). Study on deformation behavior of non–hardenable austenitic stainless steel (grade X5CrNi18–10) by hot torsion tests. Tehnički glasnik, 14(3), 396-402.
https://doi.org/10.31803/tg-20200317151347
[12] Fernández-Vicente, A., Carsí, M., Peñalba, F., Carreño, F., & Ruano, O. A. (2022). Deformation behavior during hot torsion of an ultrahigh carbon steel containing 1.3 wt.% C. International Journal of Materials Research, 94(8), 922-929.
https://doi.org/10.1515/ijmr-2003-0164
[13] Chavilian, H., Farmanesh, K., Soltanipour, A., & Maghsoudi, E. (2022). Investigation of hot deformation behavior of 321 stainless steel using hot compression test and modeling with constitutive equations. Journal of Advanced Materials in Engineering (Esteghlal), 36(3), 63-72.
https://doi.org/10.29252/JAME.36.3.63
[14] Mandal, S., Sivaprasad, P. V., Venugopal, S., & Murthy, K. P. N. (2009). Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion. Applied Soft Computing, 9(1), 237-244.
https://doi.org/10.1016/j.asoc.2008.03.016
[15] Ren, F., Chen, F., Chen, J., & Tang, X. (2018). Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel. Journal of Manufacturing Processes, 31, 640-649.
https://doi.org/10.1016/j.jmapro.2017.12.015
[16] Dehghan-Manshadi, A., Barnett, M. R., & Hodgson, P. D. (2008). Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation. Materials Science and Engineering: A, 485(1-2), 664-672.
https://doi.org/10.1016/j.msea. 2007.08.026
[17] Korkmaz, M. E. (2019). Determination and verification of Johnson–Cook parameters for 430 ferritic steels via different gage lengths. Transactions of the Indian Institute of Metals, 72(10), 2663-2672.
https://doi.org/10.1007/s12666-019-01734-9
[18] Murugesan, M., & Jung, D. W. (2019). Johnson Cook material and failure model parameters estimation of AISI-1045 medium carbon steel for metal forming applications. Materials, 12(4), 609.
https://doi.org/10. 3390/ma12040609
[19] Hassan, A. K. F., & Jawad, Q. A. (2016). Investigation of the effect of austenitizing temperature and multiple tempering on the mechanical properties of AISI 410 martensitic stainless steel. The Iraqi Journal for Mechanical and Material Engineering. Special Vol. Babylon First Int. Engineering Conf (Vol. 100, pp. 411-435).
[20] Duprez, L., De Cooman, B. C., & Akdut, N. (2002). Flow stress and ductility of duplex stainless steel during high-temperature torsion deformation. Metallurgical and Materials Transactions A, 33, 1931-1938.
https://doi.org/10.1007/s11661-002-0026-4