[1] Radhi, H. N., Aljassani, A. M., & Mohammed, M. T. (2020). Effect of ECAP on microstructure, mechanical and tribological properties of aluminum and brass alloys: A review.
Materials Today: Proceedings,
26, 2302-2307.
https://doi.org/10.1016/j.matpr.2020.02.497
[2] Ramesh Kumar, S., Gudimetla, K., Mohanlal, S., & Ravisankar, B. (2019). Effect of mechanically alloyed graphene-reinforced aluminium by equal channel angular pressing (ECAP).
Transactions of the Indian Institute of Metals,
72(6), 1437-1441.
https://doi.org/10.1007/s12666-019-01715-y
[3] Bagherpour, E., Reihanian, M., Pardis, M., Ebrahimi, R., & Langdon, T. G. (2018). Ten years of severe plastic deformation (SPD) in Iran, part I: Equal-channel angular pressing (ECAP).
Iranian Journal of Materials Forming,
5(1), 71–113.
http://dx.doi.org/10.22099/IJMF.2018.28756.1101
[4] Bagherpour, E., Pardis, N., Reihanian, M., & Ebrahimi, R. (2019). An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications.
The International Journal of Advanced Manufacturing Technology,
100, 1647-1694.
https://doi.org/10.1007/s00170-018-2652-z
[5] Azushima, A., Kopp, R., Korhonen, A., Yang, D. Y., Micari, F., Lahoti, G. D., Groche, P., Yanagimoto, J., Tsuji, N., Rosochowski, A., & Yanagida, A. (2008). Severe plastic deformation (SPD) processes for metals.
CIRP annals,
57(2), 716-735.
https://doi.org/10.1016/j.cirp.2008.09.005
[7] Khodabakhshi, F., Mohammadi, M., & Gerlich, A. P. (2021). Stability of ultra-fine and nano-grains after severe plastic deformation: A critical review.
Journal of Materials Science,
56(28), 15513-15537.
https://doi.org/10.1007/s1085302106274-6
[8] Gupta, A., Saxena, K. K., Bharti, A., Lade, J., Chadha, K., & Paresi, P. R. (2022). Influence of ECAP processing temperature and number of passes on hardness and microstructure of Al-6063.
Advances in Materials and Processing Technologies,
8, 1635-1646.
https://doi.org/10.1080/2374068X.2021.1953917
[9] Saxena, K. K., Kumar, K. B., & Gupta, A. (2021). Effect of processing parameters on equal-channel angular pressing of aluminum alloys: an overview.
Materials Today: Proceedings,
45, 5551-5559.
https://doi.org/10.1016/j.matpr.2021.02.303
[10] Hasani, A., Tóth, L. S., & Beausir, B. (2010). Principles of nonequal channel angular pressing.
Journal of Engineering Materials and Technology,
132(3), 0310011–0310019.
https://doi.org/10.1115/1.4001261
[12] Fereshteh-Saniee, F., Asgari, M., & Fakhar, N. (2016). Specialized mechanical properties of pure aluminum by using non-equal channel angular pressing for developing its electrical applications.
Applied Physics A: Materials Science and Processing,
122(8), 1-12.
https://doi.org/10.1007/s00339-016-0305-3
[13] Asgari, M., Fereshteh-Saniee, F., Pezeshki, S. M., & Barati, M. (2016). Non-equal channel angular pressing (NECAP) of AZ80 Magnesium alloy: Effects of process parameters on strain homogeneity, grain refinement and mechanical properties.
Materials Science and Engineering: A,
678, 320-328.
https://doi.org/10.1016/j.msea.2016.09.102
[14] Asgari, M., & Fereshteh-Saniee, F. (2016). Production of AZ80/Al composite rods employing non-equal channel lateral extrusion.
Transactions of Nonferrous Metals Society of China,
26(5), 1276-1283.
https://doi.org/10.1016/S10036326(16)64228-0
[16] Khanlari, H., & Honarpisheh, M. (2020). Investigation of microstructure, mechanical properties and residual stress in non-equal-channel angular pressing of 6061 aluminum alloy.
Transactions of the Indian Institute of Metals,
73(5), 1109-1121.
https://doi.org/10.1007/s12666-020-01945-5
[17] Fereshteh-Saniee, F., Asgari, M., Barati, M., & Pezeshki, S. M. (2014). Effects of die geometry on non-equal channel lateral extru sion (NECLE) of AZ80 magnesium alloy.
Transactions of Nonferrous Metals Society of China,
24(10), 3274-3284.
https://doi.org/10.1016/S1003-6326(14)63467-1
[18] Khanlari, H., & Honarpisheh, M. (2023). An upper bound analysis of channel angular pressing process considering die geometric characteristics, friction, and material strain-hardening.
CIRP Journal of Manufacturing Science and Technology,
41, 259-276.
https://doi.org/10.1016/j.cirpj.2022.12.007
[19] Rajeswari, B., & Amirthagadeswaran, K. S. (2018). Study of machinability and parametric optimization of end milling on aluminium hybrid composites using multi-objective genetic algorithm.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
40(8), 1-15.
https://doi.org/10.1007/s40430-018-1293-3
[20] Pradhan, S., Indraneel, S., Sharma, R., Bagal, D. K., & Bathe, R. N. (2020). Optimization of machinability criteria during dry machining of Ti-2 with micro-groove cutting tool using WASPAS approach.
Materials Today: Proceedings,
33, 5306-5312.
https://doi.org/10.1016/j.matpr.2020.02.972
[21] Kanaujia, N., Rahul, Behera, J. K., Mohapatra, S. K., Behera, A., Jha, P., Joshi, K. K., & Routara, B. C. (2022). Process parameters optimization in CNC turning of aluminum 7075 alloy using TOPSIS method coupled with Taguchi philosophy.
Materials Today: Proceedings,
56, 989-994.
https://doi.org/10.1016/j.matpr.2022.03.226
[22] Wagri, N. K., Petare, A., Agrawal, A., Rai, R., Malviya, R., Dohare, S., & Kishore, K. (2022). An overview of the machinability of alloy steel.
Materials Today: Proceedings,
62, 3771-3781.
https://doi.org/10.1016/j.matpr.2022.04.457
[23] Zhao, Z., To, S., Wang, J., Zhang, G., & Weng, Z. (2022). A review of micro/nanostructure effects on the machining of metallic materials.
Materials & Design,
224, 111315.
https://doi.org/10.1016/j.matdes.2022.111315
[24] Sinha, M. K., Pal, A., Kishore, K., Singh, A., Archana, Sansanwal, H., & Sharma, P. (2023). Applications of sustainable techniques in machinability improvement of superalloys: a comprehensive review.
International Journal on Interactive Design and Manufacturing (IJIDeM),
17(2), 473-498.
https://doi.org/10.1007/s12008-022-01053-2
[25] Paturi, U. M. R., & Reddy, N. S. (2021). Progress of machinability on the machining of Inconel 718: A comprehensive review on the perception of cleaner machining.
Cleaner Engineering and Technology,
5, 100323.
https://doi.org/10.1016/j.clet.2021.100323
[26] Kar, S., & Patowari, P. K. (2019). Experimental investigation of machinability and surface characteristics in microelectrical discharge milling of titanium, stainless steel and copper.
Arabian Journal for Science and Engineering,
44(9), 7843-7858.
https://doi.org/10.1007/s13369-019-03918-3
[27] Santos, M. C., Machado, A. R., Sales, W. F., Barrozo, M. A., & Ezugwu, E. O. (2016). Machining of aluminum alloys: a review.
The International Journal of Advanced Manufacturing Technology,
86, 3067-3080.
https://doi.org/10.1007/s00170-016-8431-9
[28] Soren, T. R., Kumar, R., Panigrahi, I., Sahoo, A. K., Panda, A., & Das, R. K. (2019). Machinability behavior of aluminium alloys: A brief study.
Materials Today: Proceedings,
18, 5069-5075.
https://doi.org/10.1016/j.matpr.2019.07.502
[29] Sukumar, M. S., Ramaiah, P. V., & Nagarjuna, A. (2014). Optimization and prediction of parameters in face milling of Al-6061 using Taguchi and ANN approach.
Procedia Engineering,
97, 365-371.
https://doi.org/10.1016/j.proeng.2014.12.260
[30] Pan, J., Ni, J., He, L., Cui, Z., & Feng, K. (2020). Influence of micro-structured milling cutter on the milling load and surface roughness of 6061 aluminum alloy.
The International Journal of Advanced Manufacturing Technology,
110, 3201-3208.
https://doi.org/10.1007/s00170-020-06080-5
[31] Mahanta, T. K., Lam, R. R., Chakrapani, Y., Irulappasamy, S., Dumpala, R., & Sunil, B. R. (2022). Machining characteristics of Al6063 composites reinforced with SiC particles.
Materials Today: Proceedings,
50, 2351-2354.
https://doi.org/10.1016/j.matpr.2021.10.235
[33] Rahmati, B., Sarhan, A. A., & Sayuti, M. (2014). Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS
2) nanolubrication in end milling machining.
Journal of Cleaner Production,
66, 685-691.
https://doi.org/10.1016/j.jclepro.2013.10.048
[34] Deswal, N., & Kant, R. (2022). Machinability analysis during laser assisted turning of aluminium 3003 alloy.
Lasers in Manufacturing and Materials Processing,
9(1), 56-71.
https://doi.org/10.1007/s40516-022-00163-9
[35] Yang, J., Zhang, Y., Huang, Y., Lv, J., & Wang, K. (2023). Multi-objective optimization of milling process: exploring trade-off among energy consumption, time consumption and surface roughness.
International Journal of Computer Integrated Manufacturing,
36(2), 219-238.
https://doi.org/10.1080/0951192X.2022.2078511
[36] Wiesinger, G., Baumann, C., & Krystian, M. (2018). Impact of Equal Channel Angular Pressing (ECAP) on the machinability of an aluminium alloy (EN AW-6082).
Materials Today: Proceedings,
5(13), 26654-26660.
https://doi.org/10.1016/j.matpr.2018.08.131
[37] Iyappan, S. K., Karthikeyan, S., Ravikumar, K., Makkar, S., Rutvi Uday, K., & R. V, M. (2022). Mechanical properties and machinability of aluminium and aluminium-silicon carbide composites processed by Equal Channel Angular Pressing (ECAP).
Advances in Materials and Processing Technologies,
8(1), 783-796.
https://doi.org/10.1080/2374068X.2020.1833402
[38] Fatahi Dolatabadi, J., Rafiee, M. M., Hadad, M., Faraji, G., & Hedayati-dezfooli, M. (2022). Experimental investigation of the effects of cutting parameters on machinability of ECAP-processed ultrafine-grained copper using tungsten carbide cutting tools.
Energy Equipment and Systems,
10(3), 241-254.
https://doi.org/10.22059/EES.2022.254725
[39] Skiba, J., Kossakowska, J., Kulczyk, M., Pachla, W., Przybysz, S., Smalc-Koziorowska, J., & Przybysz, M. (2020). The impact of severe plastic deformations obtained by hydrostatic extrusion on the machinability of ultrafine-grained AA5083 alloy.
Journal of Manufacturing Processes,
58, 1232-1240.
https://doi.org/10.1016/j.jmapro.2020.09.023
[40] Bandapalli, C., Singh, K. K., Sutaria, B. M., & Bhatt, D. V. (2016). Experimental investigation of machinability parameters in high-speed micro-end milling of titanium (grade-2).
The International Journal of Advanced Manufacturing Technology,
85, 2139-2153.
https://doi.org/10.1007/s00170-015-7443-1
[41] Pathak, B. N., Sahoo, K. L., & Mishra, M. (2013). Effect of machining parameters on cutting forces and surface roughness in Al-(1-2) Fe-1V-1Si alloys.
Materials and Manufacturing Processes,
28(4), 463-469.
https://doi.org/10.1080/10426914.2013.763952