Machinability Evaluation of Al 3003 Processed by Non-Equal-Channel Angular Pressing (NECAP) Using Taguchi Method

Document Type : Research Paper

Authors

Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

Abstract

Non-equal-channel angular pressing (NECAP) is emerging as one of the most developed severe plastic deformations (SPD) methods that require more detailed investigations. Machining study is inevitable to form any material into required dimensions. The lack of NECAP processed materials machining data, as a fundamental stage for production development, motivated the present work, in which the machinability aspects of Al 3003 subjected to NECAP process, in terms of cutting force, surface roughness, and chip morphology have been investigated and compared to initial state of mentioned material. Experimental runs have been conducted using defined machining parameters under the name of spindle speed, feed rate, and depth of cut. The results show noticeable enhancements in which impact of NECAP process on the machinability of Al 3003 causes reducing the cutting force (10.24%), surface roughness (8.47%), and chip formation improvement. High spindle speed (1500 rev/min), low feed rate (98 mm/min), and depth of cut (0.5 mm) have been the best cutting parameters combination to achieve desired machinability aspects in both workpiece, before and after NECAP process. The paper's findings advocate the application of NECAP processed Al 3003 in manufacturing industries.

Keywords


[1]   Radhi, H. N., Aljassani, A. M., & Mohammed, M. T. (2020). Effect of ECAP on microstructure, mechanical and tribological properties of aluminum and brass alloys: A review. Materials Today: Proceedings26, 2302-2307. https://doi.org/10.1016/j.matpr.2020.02.497
[2]   Ramesh Kumar, S., Gudimetla, K., Mohanlal, S., & Ravisankar, B. (2019). Effect of mechanically alloyed graphene-reinforced aluminium by equal channel angular pressing (ECAP). Transactions of the Indian Institute of Metals72(6), 1437-1441. https://doi.org/10.1007/s12666-019-01715-y
[3]   Bagherpour, E., Reihanian, M., Pardis, M., Ebrahimi, R., & Langdon, T. G. (2018). Ten years of severe plastic deformation (SPD) in Iran, part I: Equal-channel angular pressing (ECAP). Iranian Journal of Materials Forming, 5(1), 71–113. http://dx.doi.org/10.22099/IJMF.2018.28756.1101
[4]   Bagherpour, E., Pardis, N., Reihanian, M., & Ebrahimi, R. (2019). An overview on severe plastic deformation: research status, techniques classification, microstructure evolution, and applications. The International Journal of Advanced Manufacturing Technology100, 1647-1694. https://doi.org/10.1007/s00170-018-2652-z
[5]   Azushima, A., Kopp, R., Korhonen, A., Yang, D. Y., Micari, F., Lahoti, G. D., Groche, P., Yanagimoto, J., Tsuji, N., Rosochowski, A., & Yanagida, A. (2008). Severe plastic deformation (SPD) processes for metals. CIRP annals57(2), 716-735. https://doi.org/10.1016/j.cirp.2008.09.005
[6]   Segal, V. (2018). Review: Modes and processes of severe plastic deformation (SPD). Materials11(7), 1175. https://doi.org/10.3390/ma11071175
[7]   Khodabakhshi, F., Mohammadi, M., & Gerlich, A. P. (2021). Stability of ultra-fine and nano-grains after severe plastic deformation: A critical review. Journal of Materials Science56(28), 15513-15537. https://doi.org/10.1007/s1085302106274-6
[8]   Gupta, A., Saxena, K. K., Bharti, A., Lade, J., Chadha, K., & Paresi, P. R. (2022). Influence of ECAP processing temperature and number of passes on hardness and microstructure of Al-6063. Advances in Materials and Processing Technologies8, 1635-1646. https://doi.org/10.1080/2374068X.2021.1953917
[9]   Saxena, K. K., Kumar, K. B., & Gupta, A. (2021). Effect of processing parameters on equal-channel angular pressing of aluminum alloys: an overview. Materials Today: Proceedings45, 5551-5559. https://doi.org/10.1016/j.matpr.2021.02.303
[10] Hasani, A., Tóth, L. S., & Beausir, B. (2010). Principles of nonequal channel angular pressing. Journal of Engineering Materials and Technology, 132(3), 0310011–0310019. https://doi.org/10.1115/1.4001261
[11] Gu, C. F., & Toth, L. S. (2012). Texture development and grain refinement in non-equal-channel angular-pressed Al. Scripta Materialia67(1), 33-36. https://doi.org/10.1016/j.scriptamat.2012.03.014
[12] Fereshteh-Saniee, F., Asgari, M., & Fakhar, N. (2016). Specialized mechanical properties of pure aluminum by using non-equal channel angular pressing for developing its electrical applications. Applied Physics A: Materials Science and Processing122(8), 1-12. https://doi.org/10.1007/s00339-016-0305-3
[13] Asgari, M., Fereshteh-Saniee, F., Pezeshki, S. M., & Barati, M. (2016). Non-equal channel angular pressing (NECAP) of AZ80 Magnesium alloy: Effects of process parameters on strain homogeneity, grain refinement and mechanical properties. Materials Science and Engineering: A678, 320-328. https://doi.org/10.1016/j.msea.2016.09.102
[14] Asgari, M., & Fereshteh-Saniee, F. (2016). Production of AZ80/Al composite rods employing non-equal channel lateral extrusion. Transactions of Nonferrous Metals Society of China26(5), 1276-1283. https://doi.org/10.1016/S10036326(16)64228-0
[15] Tóth, L. S., Lapovok, R., Hasani, A., & Gu, C. (2009). Non-equal channel angular pressing of aluminum alloy. Scripta Materialia61(12), 1121-1124. https://doi.org/10.1016/j.scriptamat.2009.09.006
[16] Khanlari, H., & Honarpisheh, M. (2020). Investigation of microstructure, mechanical properties and residual stress in non-equal-channel angular pressing of 6061 aluminum alloy. Transactions of the Indian Institute of Metals73(5), 1109-1121. https://doi.org/10.1007/s12666-020-01945-5
[17] Fereshteh-Saniee, F., Asgari, M., Barati, M., & Pezeshki, S. M. (2014). Effects of die geometry on non-equal channel lateral extru sion (NECLE) of AZ80 magnesium alloy. Transactions of Nonferrous Metals Society of China24(10), 3274-3284. https://doi.org/10.1016/S1003-6326(14)63467-1
[18] Khanlari, H., & Honarpisheh, M. (2023). An upper bound analysis of channel angular pressing process considering die geometric characteristics, friction, and material strain-hardening. CIRP Journal of Manufacturing Science and Technology41, 259-276. https://doi.org/10.1016/j.cirpj.2022.12.007
[19] Rajeswari, B., & Amirthagadeswaran, K. S. (2018). Study of machinability and parametric optimization of end milling on aluminium hybrid composites using multi-objective genetic algorithm. Journal of the Brazilian Society of Mechanical Sciences and Engineering40(8), 1-15. https://doi.org/10.1007/s40430-018-1293-3
[20] Pradhan, S., Indraneel, S., Sharma, R., Bagal, D. K., & Bathe, R. N. (2020). Optimization of machinability criteria during dry machining of Ti-2 with micro-groove cutting tool using WASPAS approach. Materials Today: Proceedings33, 5306-5312. https://doi.org/10.1016/j.matpr.2020.02.972
[21] Kanaujia, N., Rahul, Behera, J. K., Mohapatra, S. K., Behera, A., Jha, P., Joshi, K. K., & Routara, B. C. (2022). Process parameters optimization in CNC turning of aluminum 7075 alloy using TOPSIS method coupled with Taguchi philosophy. Materials Today: Proceedings56, 989-994. https://doi.org/10.1016/j.matpr.2022.03.226
[22] Wagri, N. K., Petare, A., Agrawal, A., Rai, R., Malviya, R., Dohare, S., & Kishore, K. (2022). An overview of the machinability of alloy steel. Materials Today: Proceedings62, 3771-3781. https://doi.org/10.1016/j.matpr.2022.04.457
[23] Zhao, Z., To, S., Wang, J., Zhang, G., & Weng, Z. (2022). A review of micro/nanostructure effects on the machining of metallic materials. Materials & Design224, 111315. https://doi.org/10.1016/j.matdes.2022.111315
[24] Sinha, M. K., Pal, A., Kishore, K., Singh, A., Archana, Sansanwal, H., & Sharma, P. (2023). Applications of sustainable techniques in machinability improvement of superalloys: a comprehensive review. International Journal on Interactive Design and Manufacturing (IJIDeM)17(2), 473-498. https://doi.org/10.1007/s12008-022-01053-2
[25] Paturi, U. M. R., & Reddy, N. S. (2021). Progress of machinability on the machining of Inconel 718: A comprehensive review on the perception of cleaner machining. Cleaner Engineering and Technology5, 100323. https://doi.org/10.1016/j.clet.2021.100323
[26] Kar, S., & Patowari, P. K. (2019). Experimental investigation of machinability and surface characteristics in microelectrical discharge milling of titanium, stainless steel and copper. Arabian Journal for Science and Engineering44(9), 7843-7858. https://doi.org/10.1007/s13369-019-03918-3
[27] Santos, M. C., Machado, A. R., Sales, W. F., Barrozo, M. A., & Ezugwu, E. O. (2016). Machining of aluminum alloys: a review. The International Journal of Advanced Manufacturing Technology86, 3067-3080. https://doi.org/10.1007/s00170-016-8431-9
[28] Soren, T. R., Kumar, R., Panigrahi, I., Sahoo, A. K., Panda, A., & Das, R. K. (2019). Machinability behavior of aluminium alloys: A brief study. Materials Today: Proceedings18, 5069-5075. https://doi.org/10.1016/j.matpr.2019.07.502
[29] Sukumar, M. S., Ramaiah, P. V., & Nagarjuna, A. (2014). Optimization and prediction of parameters in face milling of Al-6061 using Taguchi and ANN approach. Procedia Engineering97, 365-371. https://doi.org/10.1016/j.proeng.2014.12.260
[30] Pan, J., Ni, J., He, L., Cui, Z., & Feng, K. (2020). Influence of micro-structured milling cutter on the milling load and surface roughness of 6061 aluminum alloy. The International Journal of Advanced Manufacturing Technology110, 3201-3208. https://doi.org/10.1007/s00170-020-06080-5
[31] Mahanta, T. K., Lam, R. R., Chakrapani, Y., Irulappasamy, S., Dumpala, R., & Sunil, B. R. (2022). Machining characteristics of Al6063 composites reinforced with SiC particles. Materials Today: Proceedings50, 2351-2354. https://doi.org/10.1016/j.matpr.2021.10.235
[32] Sreejith, P. S. (2008). Machining of 6061 aluminium alloy with MQL, dry and flooded lubricant conditions. Materials letters62(2), 276-278. https://doi.org/10.1016/j.matlet.2007.05.019
[33] Rahmati, B., Sarhan, A. A., & Sayuti, M. (2014). Morphology of surface generated by end milling AL6061-T6 using molybdenum disulfide (MoS2) nanolubrication in end milling machining. Journal of Cleaner Production66, 685-691. https://doi.org/10.1016/j.jclepro.2013.10.048
[34] Deswal, N., & Kant, R. (2022). Machinability analysis during laser assisted turning of aluminium 3003 alloy. Lasers in Manufacturing and Materials Processing9(1), 56-71. https://doi.org/10.1007/s40516-022-00163-9
[35] Yang, J., Zhang, Y., Huang, Y., Lv, J., & Wang, K. (2023). Multi-objective optimization of milling process: exploring trade-off among energy consumption, time consumption and surface roughness. International Journal of Computer Integrated Manufacturing36(2), 219-238. https://doi.org/10.1080/0951192X.2022.2078511
[36] Wiesinger, G., Baumann, C., & Krystian, M. (2018). Impact of Equal Channel Angular Pressing (ECAP) on the machinability of an aluminium alloy (EN AW-6082). Materials Today: Proceedings5(13), 26654-26660. https://doi.org/10.1016/j.matpr.2018.08.131
[37]       Iyappan, S. K., Karthikeyan, S., Ravikumar, K., Makkar, S., Rutvi Uday, K., & R. V, M. (2022). Mechanical properties and machinability of aluminium and aluminium-silicon carbide composites processed by Equal Channel Angular Pressing (ECAP). Advances in Materials and Processing Technologies8(1), 783-796. https://doi.org/10.1080/2374068X.2020.1833402
[38]       Fatahi Dolatabadi, J., Rafiee, M. M., Hadad, M., Faraji, G., & Hedayati-dezfooli, M. (2022). Experimental investigation of the effects of cutting parameters on machinability of ECAP-processed ultrafine-grained copper using tungsten carbide cutting tools. Energy Equipment and Systems10(3), 241-254. https://doi.org/10.22059/EES.2022.254725
[39] Skiba, J., Kossakowska, J., Kulczyk, M., Pachla, W., Przybysz, S., Smalc-Koziorowska, J., & Przybysz, M. (2020). The impact of severe plastic deformations obtained by hydrostatic extrusion on the machinability of ultrafine-grained AA5083 alloy. Journal of Manufacturing Processes58, 1232-1240. https://doi.org/10.1016/j.jmapro.2020.09.023
[40] Bandapalli, C., Singh, K. K., Sutaria, B. M., & Bhatt, D. V. (2016). Experimental investigation of machinability parameters in high-speed micro-end milling of titanium (grade-2). The International Journal of Advanced Manufacturing Technology85, 2139-2153. https://doi.org/10.1007/s00170-015-7443-1
[41]       Pathak, B. N., Sahoo, K. L., & Mishra, M. (2013). Effect of machining parameters on cutting forces and surface roughness in Al-(1-2) Fe-1V-1Si alloys. Materials and Manufacturing Processes28(4), 463-469. https://doi.org/10.1080/10426914.2013.763952