[3] Haga, T., Ikawa, M., Wtari, H., & Kumai, S. (2006). 6111 Aluminium alloy strip casting using an unequal diameter twin roll caster.
Journal of Materials Processing Technology,
172(2), 271-276.
https://doi.org/10.1016/j.jmatprotec.2005.10.007
[5] Watari, H., Davey, K., Rasgado, M. T., Haga, T., & Izawa, S. (2004). Semi-solid manufacturing process of magnesium alloys by twin-roll casting.
Journal of Materials Processing Technology,
155, 1662-1667.
https://doi.org/10.1016/j.jmatprotec.2004.04.323
[7] Küçük, İ. (2018). Effect of cold rolling reduction rate on corrosion behaviour of twin-roll cast 8006 Aluminium alloys.
Cumhuriyet Science Journal,
39(1), 233-242.
http://doi.org/10.17776/csj.390178
[8] Karlık, M., Homola, P., & Slámová, M. (2004). Accumulative roll-bonding: first experience with a twin-roll cast AA8006 alloy.
Journal of alloys and compounds,
378(1-2), 322-325.
https://doi.org/10.1016/j.jallcom.2003.10.082
[9] Sun, N., Patterson, B. R., Suni, J. P., Simielli, E. A., Weiland, H., & Allard, L. F. (2006). Microstructural evolution in twin roll cast AA3105 during homogenization.
Materials Science and Engineering: A,
416(1-2), 232-239.
https://doi.org/10.1016/j.msea.2005.10.018
[11] Sun, N., Patterson, B. R., Suni, J. P., Weiland, H., & Allard, L. F. (2006). Characterization of particle pinning potential.
Acta materialia,
54(15), 4091-4099.
https://doi.org/10.1016/j.actamat.2006.05.008
[12] Sanguinetti Ferreira, R. A., Ribeiro Freitas, F. G., & Rocha Lima, E. P. (2000). Study of decomposition in AA 8023 aluminium alloy: kinetics and morphological aspects.
Scripta materialia,
43(10), 929-934.
https://doi.org/10.1016/S1359-6462(00)00515-7
[14] Chen, Z., Zhao, J., & Chen, P. (2012). Microstructure and mechanical properties of nanostructured A8006 ribbons.
Materials Science and Engineering: A,
552, 189-193.
https://doi.org/10.1016/j.msea.2012.05.029
[15] Vončina, M., Kresnik, K., Volšak, D., & Medved, J. (2020). Effects of homogenization conditions on the microstructure evolution of aluminium alloy EN AW 8006.
Metals,
10(3), 419.
https://doi.org/10.3390/met10030419
[16] Engler, O., Laptyeva, G., & Wang, N. (2013). Impact of homogenization on microchemistry and recrystallization of the Al–Fe–Mn alloy AA 8006.
Materials Characterization,
79, 60-75.
https://doi.org/10.1016/j.matchar.2013.02.012
[17] Shakiba, M., Parson, N., & Chen, X. G. (2014). Effect of homogenization treatment and silicon content on the microstructure and hot workability of dilute Al–Fe–Si alloys.
Materials Science and Engineering: A,
619, 180-189.
https://doi.org/10.1016/j.msea.2014.09.072
[18] Roy, R. K., Kar, S., & Das, S. (2009). Evolution of microstructure and mechanical properties during annealing of cold-rolled AA8011 alloy.
Journal of Alloys and Compounds,
468(1-2), 122-129.
https://doi.org/10.1016/j.jallcom.2008.01.041
[19] Goulart, P. R., Lazarine, V. B., Leal, C. V., Spinelli, J. E., Cheung, N., & Garcia, A. (2009). Investigation of intermetallics in hypoeutectic Al–Fe alloys by dissolution of the Al matrix.
Intermetallics,
17(9), 753-761.
https://doi.org/10.1016/j.intermet.2009.03.003
[20] Wang, X., Guan, R. G., Misra, R. D. K., Wang, Y., Li, H. C., & Shang, Y. Q. (2018). The mechanistic contribution of nanosized Al
3Fe phase on the mechanical properties of Al-Fe alloy.
Materials Science and Engineering: A,
724, 452-460.
https://doi.org/10.1016/j.msea.2018.04.002
[22] Moldovan, P., Popescu, G., & Miculescu, F. (2004). Microscopic study regarding the microstructure evolution of the 8006 alloy in the plastic deformation process.
Journal of materials processing technology,
153, 408-415.
https://doi.org/10.1016/j.jmatprotec.2004.04.345