[1] Shewmon, P. G., Lorig, C. H., Gill, C. B., & Charles, J. A. (2018). Metallurgy. Encyclopedia Britannica, 26.
[2] Murtu, B. S., Yeh, J. W., & Ranganathan, S. (2014). High-entropy alloys (1st ed.). Butte rwoth-Heinemann: Elsevier.
[3] Meyers M. A., & Chawla K. K. (2008). Mechanical behavior of materials. Cambridge University Press.
[5] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C.H & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303.
https://doi.org/10.1002/adem.200300567
[6] Davis, J. R. (1990). Metals handbook. ASM International.
[8] Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93.
https://doi.org/10.1016/j.pmatsci.2013.10.001
[9] Pickering, E. J., & Jones, N. G. (2016). High-entropy alloys: a critical assessment of their founding principles and future prospects. International Materials Reviews, 61(3), 183-202.
https://doi.org/10.1080/09506608.2016.1180020
[12] Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 109(10).
https://doi.org/10.1063/1.3587228
[16] Lei, Z., Wu, Y., He, J., Liu, X., Wang, H., Jiang, S., Gu, L., Zhang, Q., Gault, B., Raabe, D. & Lu, Z. (2020). Snoek-type damping performance in strong and ductile high-entropy alloys. Science Advances, 6(25), eaba7802.
https://doi.org/10.1126/sciadv.aba7802
[17] Lu, Y., Dong, Y., Guo, S., Jiang, L., Kang, H., Wang, T., Wen, B., Wang, Z., Jie, J., Cao, Z., Ruan, H & Li, T. (2014). A promising new class of high-temperature alloys: eutectic high-entropy alloys. Scientific Reports, 4(1), 6200.
https://doi.org/10.1038/srep06200
[18] Lu, Y., Jiang, H., Guo, S., Wang, T., Cao, Z., & Li, T. (2017). A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics, 91, 124-128.
https://doi.org/10.1016/j.intermet.2017.09.001
[19] Jiang, H., Zhang, H., Huang, T., Lu, Y., Wang, T., & Li, T. (2016). Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Materials & Design, 109, 539-546.
https://doi.org/10.1016/j.matdes.2016.07.113
[20] Lu, Y., Gao, X., Jiang, L., Chen, Z., Wang, T., Jie, J., Kang, H., Zhang, Y., Guo, S., Ruan, H. and Zhao, Y., Cao, Z & Li, T. (2017). Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Materialia, 124, 143-150.
https://doi.org/10.1016/j.actamat.2016.11.016
[21] Bhattacharjee, T., Wani, I. S., Sheikh, S., Clark, I. T., Okawa, T., Guo, S., Bhattacharjee, P.P.& Tsuji, N. (2018). Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Scientific Reports, 8(1), 3276.
https://doi.org/10.1038/s41598-018-21385-y
[22] Wang, Y., Chen, W., Zhang, J., & Zhou, J. (2021). A quantitative understanding on the mechanical behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy. Journal of Alloys and Compounds, 850, 156610.
https://doi.org/10.1016/j.jallcom.2020.156610
[23] Vikram, R. J., Murty, B. S., Fabijanic, D., & Suwas, S. (2020). Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi2.1. Journal of Alloys and Compounds, 827, 154034.
https://doi.org/10.1016/j.jallcom.2020.154034
[24] Gao, X., Lu, Y., Zhang, B., Liang, N., Wu, G., Sha, G., Sha, G., Liu, J. & Zhao, Y. (2017). Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Materialia, 141, 59-66.
https://doi.org/10.1016/j.actamat.2017.07.041