The Effect of 60% Cold Rolling on the Microstructure and Mechanical Properties of the High Entropy Alloy AlCoCrFeNi2.1

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran

2 Department of Materials and Metallurgical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

Abstract

High entropy alloys are a new class of materials that have attracted much attention due to their attractive properties. High entropy alloys have various types and structures, among which, eutectic high entropy alloys have received much attention due to their unique characteristics. In this study, the effect of 60% cold rolling on the properties of AlCoCrFeNi2.1 eutectic high entropy alloy is investigated and compared with the casting condition. This alloy shows a layered structure consisting of FCC and BCC phases in both as-cast and cold-alloyed samples. In the as-cast state, the alloy showed a hardness of 352 Vickers, which increased to 401 Vickers following a 60% cold rolling. To further investigate the mechanical properties, both samples were subjected to a shear-punch test (SPT). According to the results, the as-cast sample shows good flexibility and strength which has subsequently risen following cold rolling. The measured values of the yield shear strength and final shear strength for as cast and 60% cold-rolled samples are 204, 269, 294, and 317, respectively.

Keywords


[1] Shewmon, P. G., Lorig, C. H., Gill, C. B., & Charles, J. A. (2018). Metallurgy. Encyclopedia Britannica, 26.
[2] Murtu, B. S., Yeh, J. W., & Ranganathan, S. (2014). High-entropy alloys (1st ed.). Butte rwoth-Heinemann: Elsevier.
[3] Meyers M. A., & Chawla K. K. (2008). Mechanical behavior of materials. Cambridge University Press.
[4] Ritchie, R. O. (2011). The conflicts between strength and toughness. Nature Materials, 10(11), 817-822.
https://doi.org/10.1038/nmat3115
[5] Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., Tsau, C.H & Chang, S. Y. (2004). Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6(5), 299-303. https://doi.org/10.1002/adem.200300567
[6] Davis, J. R. (1990). Metals handbook. ASM International.
[7] Ayrenk, A. (2020). Synthesis and development of refractory high entropy alloys [Master's Thesis, Çankaya University].
http://hdl.handle.net/20.500.12416/4904
[8] Zhang, Y., Zuo, T. T., Tang, Z., Gao, M. C., Dahmen, K. A., Liaw, P. K., & Lu, Z. P. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93. https://doi.org/10.1016/j.pmatsci.2013.10.001
[9] Pickering, E. J., & Jones, N. G. (2016). High-entropy alloys: a critical assessment of their founding principles and future prospects. International Materials Reviews, 61(3), 183-202. https://doi.org/10.1080/09506608.2016.1180020
[10] Miracle, D. B., & Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511. https://doi.org/10.1016/j.actamat.2016.08.081
[11] Tsai, M. H., & Yeh, J. W. (2014). High-entropy alloys: a critical review. Materials Research Letters, 2(3), 107-123. https://doi.org/10.1080/21663831.2014.912690
[12] Guo, S., Ng, C., Lu, J., & Liu, C. T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 109(10). https://doi.org/10.1063/1.3587228
[13] Chang, X., Zeng, M., Liu, K., & Fu, L. (2020). Phase engineering of high‐entropy alloys. Advanced Materials, 32(14), 1907226. https://doi.org/10.1002/adma.201907226
[14] Liao, Y., & Baker, I. (2008). Microstructure and room-temperature mechanical properties of Fe30Ni20Mn35Al15. Materials Characterization, 59(11), 1546-1549. https://doi.org/10.1016/j.matchar.2008.01.017
[15] Baker, I., Wu, M., & Wang, Z. (2019). Eutectic/ eutectoid multi-principle component alloys: a review. Materials Characterization, 147, 545-557. https://doi.org/10.1016/j.matchar.2018.07.030
[16] Lei, Z., Wu, Y., He, J., Liu, X., Wang, H., Jiang, S., Gu, L., Zhang, Q., Gault, B., Raabe, D. & Lu, Z. (2020). Snoek-type damping performance in strong and ductile high-entropy alloys. Science Advances, 6(25), eaba7802. https://doi.org/10.1126/sciadv.aba7802
[17] Lu, Y., Dong, Y., Guo, S., Jiang, L., Kang, H., Wang, T., Wen, B., Wang, Z., Jie, J., Cao, Z., Ruan, H & Li, T. (2014). A promising new class of high-temperature alloys: eutectic high-entropy alloys. Scientific Reports, 4(1), 6200. https://doi.org/10.1038/srep06200
[18] Lu, Y., Jiang, H., Guo, S., Wang, T., Cao, Z., & Li, T. (2017). A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics, 91, 124-128. https://doi.org/10.1016/j.intermet.2017.09.001
[19] Jiang, H., Zhang, H., Huang, T., Lu, Y., Wang, T., & Li, T. (2016). Microstructures and mechanical properties of Co2MoxNi2VWx eutectic high entropy alloys. Materials & Design, 109, 539-546. https://doi.org/10.1016/j.matdes.2016.07.113
[20] Lu, Y., Gao, X., Jiang, L., Chen, Z., Wang, T., Jie, J., Kang, H., Zhang, Y., Guo, S., Ruan, H. and Zhao, Y., Cao, Z & Li, T. (2017). Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Materialia, 124, 143-150. https://doi.org/10.1016/j.actamat.2016.11.016
[21] Bhattacharjee, T., Wani, I. S., Sheikh, S., Clark, I. T., Okawa, T., Guo, S., Bhattacharjee, P.P.& Tsuji, N. (2018). Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Scientific Reports, 8(1), 3276. https://doi.org/10.1038/s41598-018-21385-y
[22] Wang, Y., Chen, W., Zhang, J., & Zhou, J. (2021). A quantitative understanding on the mechanical behavior of AlCoCrFeNi2.1 eutectic high-entropy alloy. Journal of Alloys and Compounds, 850, 156610. https://doi.org/10.1016/j.jallcom.2020.156610
[23] Vikram, R. J., Murty, B. S., Fabijanic, D., & Suwas, S. (2020). Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi2.1. Journal of Alloys and Compounds, 827, 154034. https://doi.org/10.1016/j.jallcom.2020.154034
[24] Gao, X., Lu, Y., Zhang, B., Liang, N., Wu, G., Sha, G., Sha, G., Liu, J. & Zhao, Y. (2017). Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1 eutectic high-entropy alloy. Acta Materialia, 141, 59-66. https://doi.org/10.1016/j.actamat.2017.07.041
[25] Shukla, S., Wang, T., Cotton, S., & Mishra, R. S. (2018). Hierarchical microstructure for improved fatigue properties in a eutectic high entropy alloy. Scripta Materialia, 156, 105-109. https://doi.org/10.1016/j.scriptamat.2018.07.022