[1] Emmanuel, A. O., Fayomi, O. S. I., & Akande, I. G. (2021, April). Aluminium alloys as advanced materials: a short communication. In IOP Conference Series: Materials Science and Engineering (Vol. 1107, No. 1, p. 012024). IOP Publishing.
https://doi.org/10.1088/1757-899X/1107/1/012024
[2] Liu, L., Zhao, G., Wang, G., Ma, X., Yan, Z., & Cao, S. (2023). Hot deformation behavior and microstructure evolution model of 7055 aluminum alloy. Journal of Materials Research and Technology, 27, 3191-3213.
https://doi.org/10.1016/j.jmrt.2023.10.165
[3] Lall, C., Heath, W. (2000). P/M aluminum structural parts: manufacturing and metallurgical fundamentals. International Journal of Powder Metallurgy, 36(6), 45-50.
[4] Abdullah, Y., & Kamarudin, N. (2012). Al/B4C composites with 5 and 10 wt% reinforcement content prepared by powder metallurgy. Journal of Nuclear and Related Technologies, 9(01), 43-48.
[5] Sedehi, S. M. R., Khosravi, M., & Yaghoubinezhad, Y. (2021). Mechanical properties and microstructures of reduced graphene oxide reinforced titanium matrix composites produced by spark plasma sintering and simple shear extrusion. Ceramics International, 47(23), 33180-33190.
https://doi.org/10.1016/j.ceramint.2021.08.219
[6] Bunakov, N. A., Kozlov, D. V., Golovanov, V. N., Klimov, E. S., Grebchuk, E. E., Efimov, M. S., & Kostishko, B. B. (2016). Fabrication of multi-walled carbon nanotubes–aluminum matrix composite by powder metallurgy technique. Results in Physics, 6, 231-232.
https://doi.org/10.1016/j.rinp.2016.04.013
[7] Nassar, A. E., & Nassar, E. E. (2017). Properties of aluminum matrix nano composites prepared by powder metallurgy processing. Journal of King Saud University-Engineering Sciences, 29(3), 295-299.
https://doi.org/10.1016/j.jksues.2015.11.001
[8] Dixit, M., & Srivastava, R. K. (2018, June). Effect of compaction pressure on microstructure, density and hardness of copper prepared by powder metallurgy route. In IOP Conference Series: Materials Science and Engineering (Vol. 377, No. 1, p. 012209). IOP Publishing.
https://doi.org/0.1088/1757-899X/377/1/012209
[9] Rzepa, S., Trojanová, Z., Melzer, D., Procházka, R., Koukolíková, M., Podaný, P., & Džugan, J. (2023). Effect of ECAP on fracture toughness and fatigue endurance of DED-processed Ti-6Al-4V investigated on miniaturized specimens. Journal of Alloys and Compounds, 968, 172167.
https://doi.org/10.1016/j.jallcom.2023.172167
[11] Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T., & Hong, R. G. (1998). Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Materialia, 39(9), 1221-1227. https://doi.org/10.1016/S1359-6462(98)00302-9
[12] Langdon, T. G. (2007). The processing of ultrafine-grained materials through the application of severe plastic deformation. Journal of Materials Science, 42(10), 3388-3397.
https://doi.org/10.1007/s10853-006-1475-8
[13] Sedehi, S. M. R., Khosravi, M., & Yaghoubi Nejad, Y. (2022). Experimental comparison of microstructure and surface properties of Al/Al2O3 sample produced by powder metallurgy and spark plasma sintering methods. Journal of Solid and Fluid Mechanics, 12(5), 123-132.
https://doi.org/10.22044/JSFM.2022.11821.3580
[14] Liu, J., & Liang, C. (2017). Microstructure characterization and mechanical properties of bulk nanocrystalline aluminium prepared by SPS and followed by high-temperature extruded techniques. Materials Letters, 206, 95-99.
https://doi.org/10.1016/j.matlet.2017.06.129
[15] Zhou, F., Lee, J., Dallek, S., & Lavernia, E. J. (2001). High grain size stability of nanocrystalline Al prepared by mechanical attrition. Journal of Materials Research, 16(12), 3451-3458.
https://doi.org/10.1557/JMR.2001.0474
[16] Zabihi, M., Emadoddin, E., & Qods, F. (2020). Processing of Al/Al2O3 composite using simple shear extrusion (SSE) manufactured by powder metallurgy (PM). Metals and Materials International, 26, 1-13.
https://doi.org/10.1007/s12540-019-00299-y
[17] Ribeiro, T. M., Catellan, E., Garcia, A., & dos Santos, C. A. (2020). The effects of Cr addition on microstructure, hardness and tensile properties of as-cast Al–3.8 wt.% Cu–(Cr) alloys. Journal of Materials Research and Technology, 9(3), 6620-6631.
https://doi.org/10.1016/j.jmrt.2020.04.054
[18] Cheng, L., Liu, C., Han, D., Ma, S., Guo, W., Cai, H., & Wang, X. (2019). Effect of graphene on corrosion resistance of waterborne inorganic zinc-rich coatings. Journal of Alloys and Compounds, 774, 255-264.
https://doi.org/10.1016/j.jallcom.2018.09.315
[19] Zhang, Y., Chen, F., Zhang, Y., & Du, C. (2020). 1Influence of graphene oxide additive on the tribological and electrochemical corrosion properties of a PEO coating prepared on AZ31 magnesium alloy. Tribology International, 146, 106135.
https://doi.org/10.1016/j.triboint.2019.106135