Production of Al5083-Al2O3 Metal Base Composite Using Accumulative Roll Bonding

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, University of Birjand, Birjand, Iran

2 Faculty of Mechanical Engineering, Babol Noshirvani University of Technology, Babol, Iran

3 Department of Mechanical and Materials Engineering, Birjand University of Technology, Birjand, Iran

Abstract

The strength of aluminum Al5083 laminated composite in accumulative roll bonding (ARB) is increased using Al2O3 nanoparticles. For this purpose, the ARB process was conducted at room temperature without lubricants in four consecutive passes. A thickness reduction of 50% in each pass was considered with no heat treatment between sequential passes. In each pass, Al2O3 nanoparticles were placed between the layers. Finally, the produced metal composite was evaluated for microstructural and mechanical properties using optical microscopy, and uniaxial tensile, microhardness, and peeling tests according to the relevant standards. The primary objective of this research was to enhance the tensile strength of the composite after work hardening by incorporating nanoparticles and annealing in the final cycle. The results showed that with an increase in accumulative roll bonding cycles, tensile strength and hardness increased, and this increase occurred more prominently in the initial cycles. Furthermore, the amount of elongation decreased at the end of the first pass and then increased until the end of the fourth pass. These changes in mechanical properties during the ARB process are due to the dominant mechanisms of work hardening and strain hardening in the initial cycles and the improvement in microstructure and refinement of grains in the final cycles of this process. The highest tensile strength and microhardness, which increased by 48.1% and 55.9%, respectively, compared to the initial sample were measured at the end of the fourth cycle. Additionally, comparing the heat-treated sample with Al2O3 nanoparticles to the base metal showed a 34.9% increase in strength and a 30.8% decrease in elongation.

Keywords


[1]     Jamaati, R., & Toroghinejad, M. R. (2010). Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process. Materials & Design31(9), 4508-4513. https://doi.org/10.1016/j.matdes.2010.04.022
[2]     Li, L., Nagai, K., & Yin, F. (2008). Progress in cold roll bonding of metals. Science and Technology of Advanced Materials, 9(2), 023001. https://doi.org/10.1 088/1468-6996/9/2/023001
[3]     Jamaati, R., & Toroghinejad, M. R. (2010). High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes. Materials & Design, 31(10), 4816-4822. https://doi.org/10.1016/j.matdes.2010.04.048
[4]     Shingu, P. H., Ishihara, K. N., Otsuki, A., & Daigo, I. (2001). Nano-scaled multi-layered bulk materials manufactured by repeated pressing and rolling in the Cu–Fe system. Materials Science and Engineering: A304, 399-402. https://doi.org/10.1016/S0921-5093(00)01516-1
[5]     Movchan, B. A., & Lemkey, F. D. (1997). Mechanical properties of fine-crystalline two-phase materials. Materials Science and Engineering: A224(1-2), 136-145. https://doi.org/10.1016/S0921-5093(96)10455-X
[6]     Chino, Y., Mabuchi, M., Kishihara, R., Hosokawa, H., Yamada, Y., Cui, E. W., Shimojima, K., & Iwasaki, H. (2002). Mechanical properties and press formability at room temperature of AZ31 Mg alloy processed by single roller drive rolling. Materials Transactions43(10), 2554-2560. https://doi.org/10.2320/matertrans.43.25 54
[7]     Pirgazi, H., Akbarzadeh, A., Petrov, R., & Kestens, L. (2008). Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding. Materials Science and Engineering: A497(1-2), 132-138. https://doi.org/1 0.1016/j.msea.2008.06.025
[8]     Li, S., Beyerlein, I. J., Alexander, D. J., & Vogel, S. C. (2005). Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modeling. Acta Materialia53(7), 2111-2125. https://doi.org/10.1016/j.actamat.2005.01.023
[9]     Richert, M., Liu, Q., & Hansen, N. (1999). Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression. Materials Science and Engineering: A260(1-2), 275-283. https://doi.org/10.1016/S0921-5093(98)00988-5
[10]  Khatibi, G., Horky, J., Weiss, B., & Zehetbauer, M. J. (2010). High cycle fatigue behaviour of copper deformed by high pressure torsion. International Journal of Fatigue32(2), 269-278. https://doi.org/10.1016/j.ijfatigue.2009.06.017
[11]   Fattah-Alhosseini, A., Naseri, M., & Alemi, M. H. (2016). Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process. Journal of Manufacturing Processes22, 120-126. https://doi.org/10.1016/j.jmapro.2016.03.006
[12] Duan, J. Q., Quadir, M. Z., & Ferry, M. (2017). Engineering low intensity planar textures in commercial purity nickel sheets by cross roll bonding. Materials Letters188, 138-141. https://doi.org/10.1016/j.matlet.2016.11.040
[13]   Zeng, L. F., Gao, R., Fang, Q. F., Wang, X. P., Xie, Z. M., Miao, S., Hao, T. & Zhang, T. (2016). High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding. Acta Materialia110, 341-351. https://doi.org/10.1016/j.actamat.2016.03.034
[14]   Eslami, A. H., Balali, M., & Seyedkashi, S. M. (2018). Study and comparison of simple shear extrusion and accumulative roll bonding processes in improving the mechanical and structural properties of copper. Metallurgical Engineering21(2), 118-128. https://doi.org/10.22076/ME.2018.82259.1174
[15]   Saito, Y., Utsunomiya, H., Tsuji, N., & Sakai, T. J. A. M. (1999). Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process. Acta Materialia47(2), 579-583. https://doi.org/10.1016/S1359-6454(98)00365-6
[16]   Dehghan, M., Qods, F., Gerdooei, M., & Mohammadian-Semnani, H. (2021). Influence of intermediate heating in cross accumulative roll-bonding process on planar isotropy of the mechanical properties of commercial purity aluminium sheet. Metals and Materials International27, 4937-4951. https://doi.org/10.1007/s12540-020-00833-3
[17]   Su, L., Lu, C., Li, H., Deng, G., & Tieu, K. (2014). Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding. Materials Science and Engineering: A614, 148-155. https://doi.org/10.10 16/j.msea.2014.07.032
[18]   Bonnot, E., Helbert, A. L., Brisset, F., & Baudin, T. (2013). Microstructure and texture evolution during the ultra grain refinement of the Armco iron deformed by accumulative roll bonding (ARB). Materials Science and Engineering: A561, 60-66. https://doi.org/10.1016/j.msea.2012.11.017
[19]   Shaarbaf, M., & Toroghinejad, M. R. (2008). Nano-grained copper strip produced by accumulative roll bonding process. Materials Science and Engineering: A473(1-2), 28-33. https://doi.org/10.1016/j.msea.2 007.03.065
[20]  Mehr, V. Y., Toroghinejad, M. R., & Rezaeian, A. (2014). The effects of oxide film and annealing treatment on the bond strength of Al–Cu strips in cold roll bonding process. Materials & Design53, 174-181. https://doi.org/10.1016/j.matdes.2013.06.028
[21]   Ng, H. P., Przybilla, T., Schmidt, C., Lapovok, R., Orlov, D., Höppel, H. W., & Göken, M. (2013). Asymmetric accumulative roll bonding of aluminium–titanium composite sheets. Materials Science and Engineering: A576, 306-315. https://doi.org/10.1016/j.msea.2013.04.027
[22]  Gao, Y., Vini, M. H., & Daneshmand, S. (2022). Effect of nano Al2O3 particles on the mechanical and wear properties of Al/Al2O3 composites manufactured via ARB. Reviews on Advanced Materials Science61(1), 734-743. https://doi.org/10.1515/rams-2022-0268
[23]  Sedighi, M., Vini, M. H., & Farhadipour, P. (2016). Effect of alumina content on the mechanical properties of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding. Powder Metallurgy and Metal Ceramics55, 413-418. https://doi.org/10.1 007/s11106-016-9821-0
[24]  Mosleh-Shirazi, S., Akhlaghi, F., & Li, D. Y. (2016). Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites. Transactions of Nonferrous Metals Society of China26(7), 1801-1808. https://doi.org/10.1016/S1003-6326(16)64294-2
[25]  Mosleh-Shirazi, S., & Akhlaghi, F. (2019). Tribological behavior of Al/SiC and Al/SiC/2 vol% Gr nanocomposites containing different amounts of nano SiC particles. Materials Research Express6(6), 065039.
[26]   Lee, J. M., Lee, B. R., & Kang, S. B. (2005). Control of layer continuity in metallic multilayers produced by deformation synthesis method. Materials Science and Engineering: A406(1-2), 95-101. https://doi.org/10.1016/j.msea.2005.06.030
[27]  Yazar, Ö., Ediz, T., & Öztürk, T. (2005). Control of macrostructure in deformation processing of metal/metal laminates. Acta Materialia53(2), 375-381. https://doi.org/10.1016/j.actamat.2004.09.033
[28]    Sadoun, A. M., Meselhy, A. F., & Deabs, A. W. (2020). Improved strength and ductility of friction stir tailor-welded blanks of base metal AA2024 reinforced with interlayer strip of AA7075. Results in Physics16, 102911. https://doi.org/10.1016/j.rinp.2019.102911
[29]  Xu, R., Liang, N., Zhuang, L., Wei, D., & Zhao, Y. (2022). Microstructure and mechanical behaviors of Al/Cu laminated composites fabricated by accumulative roll bonding and intermediate annealing. Materials Science and Engineering: A832, 142510. https://doi.org/10.1016/j.msea.2021.142510
[30]   Sadoun, A. M., Abd El-Wadoud, F., Fathy, A., Kabeel, A. M., & Megahed, A. A. (2021). Effect of through-the-thickness position of aluminum wire mesh on the mechanical properties of GFRP/Al hybrid composites. Journal of Materials Research and Technology15, 500-510. https://doi.org/10.1016/j.jmr t.2021.08.026
[31]   Chen, Y., Nie, J., Wang, F., Yang, H., Wu, C., Liu, X., & Zhao, Y. (2020). Revealing hetero-deformation induced (HDI) stress strengthening effect in laminated Al-(TiB2+ TiC) p/6063 composites prepared by accumulative roll bonding. Journal of Alloys and Compounds815, 152285. https://doi.org/10.1016/j.j allcom.2019.152285
[32]   Liu, C. Y., Wang, Q., Jia, Y. Z., Zhang, B., Jing, R., Ma, M. Z., Jing, Q., & Liu, R. P. (2012). Effect of W particles on the properties of accumulatively roll-bonded Al/W composites. Materials Science and Engineering: A547, 120-124. https://doi.org/10.1016/j.msea.2012.03.095
[33]  Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T., & Hong, R. G. (1998). Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Materialia39(9), 1221-1227. https://doi.org/10.1016/S1359-6462(98)00302-9