[1] Jamaati, R., & Toroghinejad, M. R. (2010). Effect of friction, annealing conditions and hardness on the bond strength of Al/Al strips produced by cold roll bonding process.
Materials & Design,
31(9), 4508-4513.
https://doi.org/10.1016/j.matdes.2010.04.022
[3] Jamaati, R., & Toroghinejad, M. R. (2010). High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes.
Materials & Design,
31(10), 4816-4822.
https://doi.org/10.1016/j.matdes.2010.04.048
[4] Shingu, P. H., Ishihara, K. N., Otsuki, A., & Daigo, I. (2001). Nano-scaled multi-layered bulk materials manufactured by repeated pressing and rolling in the Cu–Fe system.
Materials Science and Engineering: A,
304, 399-402.
https://doi.org/10.1016/S0921-5093(00)01516-1
[6] Chino, Y., Mabuchi, M., Kishihara, R., Hosokawa, H., Yamada, Y., Cui, E. W., Shimojima, K., & Iwasaki, H. (2002). Mechanical properties and press formability at room temperature of AZ31 Mg alloy processed by single roller drive rolling.
Materials Transactions,
43(10), 2554-2560.
https://doi.org/10.2320/matertrans.43.25 54
[7] Pirgazi, H., Akbarzadeh, A., Petrov, R., & Kestens, L. (2008). Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding.
Materials Science and Engineering: A,
497(1-2), 132-138.
https://doi.org/1 0.1016/j.msea.2008.06.025
[8] Li, S., Beyerlein, I. J., Alexander, D. J., & Vogel, S. C. (2005). Texture evolution during multi-pass equal channel angular extrusion of copper: Neutron diffraction characterization and polycrystal modeling.
Acta Materialia,
53(7), 2111-2125.
https://doi.org/10.1016/j.actamat.2005.01.023
[9] Richert, M., Liu, Q., & Hansen, N. (1999). Microstructural evolution over a large strain range in aluminium deformed by cyclic-extrusion–compression.
Materials Science and Engineering: A,
260(1-2), 275-283.
https://doi.org/10.1016/S0921-5093(98)00988-5
[10] Khatibi, G., Horky, J., Weiss, B., & Zehetbauer, M. J. (2010). High cycle fatigue behaviour of copper deformed by high pressure torsion.
International Journal of Fatigue,
32(2), 269-278.
https://doi.org/10.1016/j.ijfatigue.2009.06.017
[11] Fattah-Alhosseini, A., Naseri, M., & Alemi, M. H. (2016). Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process.
Journal of Manufacturing Processes,
22, 120-126.
https://doi.org/10.1016/j.jmapro.2016.03.006
[12] Duan, J. Q., Quadir, M. Z., & Ferry, M. (2017). Engineering low intensity planar textures in commercial purity nickel sheets by cross roll bonding.
Materials Letters,
188, 138-141.
https://doi.org/10.1016/j.matlet.2016.11.040
[13] Zeng, L. F., Gao, R., Fang, Q. F., Wang, X. P., Xie, Z. M., Miao, S., Hao, T. & Zhang, T. (2016). High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding.
Acta Materialia,
110, 341-351.
https://doi.org/10.1016/j.actamat.2016.03.034
[14] Eslami, A. H., Balali, M., & Seyedkashi, S. M. (2018). Study and comparison of simple shear extrusion and accumulative roll bonding processes in improving the mechanical and structural properties of copper.
Metallurgical Engineering,
21(2), 118-128.
https://doi.org/10.22076/ME.2018.82259.1174
[15] Saito, Y., Utsunomiya, H., Tsuji, N., & Sakai, T. J. A. M. (1999). Novel ultra-high straining process for bulk materials—development of the accumulative roll-bonding (ARB) process.
Acta Materialia,
47(2), 579-583.
https://doi.org/10.1016/S1359-6454(98)00365-6
[16] Dehghan, M., Qods, F., Gerdooei, M., & Mohammadian-Semnani, H. (2021). Influence of intermediate heating in cross accumulative roll-bonding process on planar isotropy of the mechanical properties of commercial purity aluminium sheet.
Metals and Materials International,
27, 4937-4951.
https://doi.org/10.1007/s12540-020-00833-3
[17] Su, L., Lu, C., Li, H., Deng, G., & Tieu, K. (2014). Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding.
Materials Science and Engineering: A,
614, 148-155.
https://doi.org/10.10 16/j.msea.2014.07.032
[18] Bonnot, E., Helbert, A. L., Brisset, F., & Baudin, T. (2013). Microstructure and texture evolution during the ultra grain refinement of the Armco iron deformed by accumulative roll bonding (ARB).
Materials Science and Engineering: A,
561, 60-66.
https://doi.org/10.1016/j.msea.2012.11.017
[19] Shaarbaf, M., & Toroghinejad, M. R. (2008). Nano-grained copper strip produced by accumulative roll bonding process.
Materials Science and Engineering: A,
473(1-2), 28-33.
https://doi.org/10.1016/j.msea.2 007.03.065
[20] Mehr, V. Y., Toroghinejad, M. R., & Rezaeian, A. (2014). The effects of oxide film and annealing treatment on the bond strength of Al–Cu strips in cold roll bonding process.
Materials & Design,
53, 174-181.
https://doi.org/10.1016/j.matdes.2013.06.028
[21] Ng, H. P., Przybilla, T., Schmidt, C., Lapovok, R., Orlov, D., Höppel, H. W., & Göken, M. (2013). Asymmetric accumulative roll bonding of aluminium–titanium composite sheets.
Materials Science and Engineering: A,
576, 306-315.
https://doi.org/10.1016/j.msea.2013.04.027
[22] Gao, Y., Vini, M. H., & Daneshmand, S. (2022). Effect of nano Al2O3 particles on the mechanical and wear properties of Al/Al2O3 composites manufactured via ARB.
Reviews on Advanced Materials Science,
61(1), 734-743.
https://doi.org/10.1515/rams-2022-0268
[23] Sedighi, M., Vini, M. H., & Farhadipour, P. (2016). Effect of alumina content on the mechanical properties of AA5083/Al2O3 composites fabricated by warm accumulative roll bonding.
Powder Metallurgy and Metal Ceramics,
55, 413-418.
https://doi.org/10.1 007/s11106-016-9821-0
[24] Mosleh-Shirazi, S., Akhlaghi, F., & Li, D. Y. (2016). Effect of SiC content on dry sliding wear, corrosion and corrosive wear of Al/SiC nanocomposites.
Transactions of Nonferrous Metals Society of China,
26(7), 1801-1808.
https://doi.org/10.1016/S1003-6326(16)64294-2
[25] Mosleh-Shirazi, S., & Akhlaghi, F. (2019). Tribological behavior of Al/SiC and Al/SiC/2 vol% Gr nanocomposites containing different amounts of nano SiC particles. Materials Research Express, 6(6), 065039.
[26] Lee, J. M., Lee, B. R., & Kang, S. B. (2005). Control of layer continuity in metallic multilayers produced by deformation synthesis method.
Materials Science and Engineering: A,
406(1-2), 95-101.
https://doi.org/10.1016/j.msea.2005.06.030
[28] Sadoun, A. M., Meselhy, A. F., & Deabs, A. W. (2020). Improved strength and ductility of friction stir tailor-welded blanks of base metal AA2024 reinforced with interlayer strip of AA7075.
Results in Physics,
16, 102911.
https://doi.org/10.1016/j.rinp.2019.102911
[29] Xu, R., Liang, N., Zhuang, L., Wei, D., & Zhao, Y. (2022). Microstructure and mechanical behaviors of Al/Cu laminated composites fabricated by accumulative roll bonding and intermediate annealing.
Materials Science and Engineering: A,
832, 142510.
https://doi.org/10.1016/j.msea.2021.142510
[30] Sadoun, A. M., Abd El-Wadoud, F., Fathy, A., Kabeel, A. M., & Megahed, A. A. (2021). Effect of through-the-thickness position of aluminum wire mesh on the mechanical properties of GFRP/Al hybrid composites.
Journal of Materials Research and Technology,
15, 500-510.
https://doi.org/10.1016/j.jmr t.2021.08.026
[31] Chen, Y., Nie, J., Wang, F., Yang, H., Wu, C., Liu, X., & Zhao, Y. (2020). Revealing hetero-deformation induced (HDI) stress strengthening effect in laminated Al-(TiB2+ TiC) p/6063 composites prepared by accumulative roll bonding.
Journal of Alloys and Compounds,
815, 152285.
https://doi.org/10.1016/j.j allcom.2019.152285
[32] Liu, C. Y., Wang, Q., Jia, Y. Z., Zhang, B., Jing, R., Ma, M. Z., Jing, Q., & Liu, R. P. (2012). Effect of W particles on the properties of accumulatively roll-bonded Al/W composites.
Materials Science and Engineering: A,
547, 120-124.
https://doi.org/10.1016/j.msea.2012.03.095
[33] Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T., & Hong, R. G. (1998). Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process.
Scripta Materialia,
39(9), 1221-1227.
https://doi.org/10.1016/S1359-6462(98)00302-9