Numerical Parametric Analysis of Similar Joints in Friction Stir Welding of Aluminum Alloy 6061-T6

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, Arak University, 38156-8-8349, Arak, Iran

2 Department of Materials Science and Engineering, Faculty of Engineering, Arak University, 38156-8-8349, Arak, Iran

Abstract

Friction stir welding (FSW) is a solid-state welding technique that exhibits a lower residual stress compared to fusion welding. This study focuses on FE modeling of the process for homogeneous aluminum alloy 6061, presenting uncoupled thermal and mechanical analyses. The thermal analysis utilized a DFLUX subroutine, providing a reasonable temperature distribution that was validated experimentally through temperature measurement by mean of thermocouples. The computed temperature field was then incorporated into the mechanical analysis. To evaluate the impact of welding parameters including advancing speed and rotational speed on maximum welding temperature and residual stresses, an experimental design using the response surface method via Minitab Statistical Software 22 was employed. Results indicate that at a constant rotational speed, temperature and residual stress decrease at a constant advancing speed temperature by increasing the advancing speed while residual stress increases by increasing rotational speed.

Keywords


[1] Lohwasser, D., & Chen, Z. (Eds.). (2009). Friction stir welding: From basics to applications. Elsevier.
[2] Cho, J. H., Boyce, D. E., & Dawson, P. R. (2005). Modeling strain hardening and texture evolution in friction stir welding of stainless steel. Materials Science and Engineering: A, 398(1-2), 146-163. https://doi.org/10.1016/j.msea.2005.03.002
[3] London, B., Mahoney, M., Bingel, W., Calabrese, M., & Waldron, D. (2001). Experimental methods for determining material flow in friction stir welds. In The Third International Symposium on Friction Stir Welding, Kobe, Japan (Vol. 27, p. 28).
[4] Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(1-2), 1-78. https://doi.org/10.1016/j.mser.2005.07.001
[5] Ajri, A., Rohatgi, N., Shin, Y. C. (2020). Analysis of defect formation mechanisms and their effects on weld strength during friction stir welding of Al 6061-T6 via experiments and finite element modeling. The International Journal of Advanced Manufacturing Technology, 107, 4621–4635. https://doi.org/10.1007/s00170-020-05353-3
[6] Asmare, A., Al-Sabur, R., Messele, E. (2020). Experimental investigation of friction Stir welding on 6061-T6 aluminum alloy using Taguchi-based GRA. Journal of. Metals, 10(11), 1480.
https://doi.org/10.3390/met10111480
[7] Uday, M. B., Ahmad Fauzi, M. N., Zuhailawati, H., & Ismail, A. B. (2010). Advances in friction welding process: a review. Science and Technology of Welding and Joining, 15(7), 534–558.
https://doi.org/10.1179/136217110X12785889550064
[8] Nandan, R., DebRoy, T., & Bhadeshia, H. K. D. H. (2008). Recent advances in friction-stir welding–process, weldment structure and properties. Progress in Materials Science, 53(6),.980-1023. https://doi.org/10.1016/j.pmatsci.2008.05.001
[9] Song, M., & Kovacevic, R. (2003). Numerical and experimental study of the heat transfer process in friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(1),.73-85. https://doi.org/10.1243/095440503762502297
[10] Zhang, Z., & Zhang H. W. (2009). Numerical studies on controlling of process parameters in friction stir welding. Journal of Materials Processing Technology, 209(1), 241-270. https://doi.org/10.1016/j.jmatprotec.2008.01.044
[11] Zhang, H. W., Zhang, Z., & Chen, J. T. (2005). The finite element simulation of the friction stir welding process. Materials Science and Engineering: A, 403(1-2), 340-348. https://doi.org/10.1016/j.msea.2005.05.052
[12] Riahi, M., & Nazari, H. (2011). Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. The International Journal of Advanced Manufacturing Technology, 55(1), 143-152.
https://doi.org/10.1007/s00170-010-3038-z
[13] Jafari, H., Mansouri, H., & Honarpisheh, M. (2019). Investigation of residual stress distribution of dissimilar Al-7075-T6 and Al-6061-T6 in the friction stir welding process strengthened with SiO2 nanoparticles. Journal of Manufacturing Processes, 43, 145-153.
https://doi.org/10.1016/j.jmapro.2019.05.023
[14] Khandkar, M. Z. H., Khan, J. A., Reynolds, A. P., & Sutton, M. A. (2006). Predicting residual thermal stresses in friction stir welded metals. Journal of Materials Processing Technology, 174(1–3), 195–203. https://doi.org/10.1016/j.jmatprotec.2005.12.013
[15] Feng, Z., Wang, Z. L., David, S. A., & Sklad, P. S. (2007). Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6. Science and Technology of Welding and Joining, 12(4), 348-356. https://doi.org/10.1179/174329307X197610
[16] Buffa, G., Ducato, A., & Fratini, L. (2011). Numerical procedure for residual stresses prediction in friction stir welding. Finite Elements in Analysis and Design, 47(4), 470-476. https://doi.org/10.1016/j.finel.2010.12.018
[17] Ghahremani-Moghadam, D., Farhangdoost, K., & Masoudi Nejad, R. (2016). Microstructure and residual stress distributions under the influence of welding speed in friction stir welded 2024 aluminum alloy. Metallurgical and Materials Transactions B, 47(3), 2048-2062. https://doi.org/10.1007/s11663-016-0611-3
[18] Sadeghi, S., Ahmadi Najafabadi, M., Javadi, Y., & Mohammadisefat, M. (2013). Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates. Materials & Design (1980-2015), 52, 870-880. https://doi.org/10.1016/j.matdes.2013.06.032
[19] Sun, H., Zhou, Q., Zhu, J., Shi, X., Sun, Z. (2020). Deformation analysis of a friction stir-welded thin sheet aluminum alloy joint. China Welding, 29(1), 56-62. https://doi.org/10.12073/j.cw.20190902002
[20] Melaku, L. E., Tura, A. D., Mamo, H. B., Santhosh, A. J., Ashok, N. (2022). Optimization and thermal analysis of friction stir welding on AA6061 aluminum alloys. Materials Today: Proceedings, 65(8), 3348-3356. https://doi.org/10.1016/j.matpr.2022.05.463
[21] Chao, Y. J., & Qi, X. (1998). Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6. Journal of Materials Processing & Manufacturing Science, 7(2), 215-233. https://doi.org/10.1106/LTKR-JFBM-RGMV-WVCF
[22] Schmidt, H. N. B, Hattel, J., & Wert, J. (2004). An analytical model for the heat generation in friction stir welding. Modelling and Simulation in Materials Science and Engineering, 12(1), 143-157. https://doi.org/10.1088/0965-0393/12/1/013
[23] Ji, S. D., Jin, Y. Y., Yue, Y. M., Gao, S. S., Huang, Y. X., & Wang, L. (2013). Effect of temperature on material transfer behavior at different stages of friction stir welded 7075-T6 aluminum alloy. Journal of Materials Science & Technology, 29(10), 955-960. https://doi.org/10.1016/j.jmst.2013.05.018
[24] Chao, Y. J., Qi, Z., & Tang, W. (2003). Heat transfer in friction stir welding—experimental and numerical studies. Journal of Manufacturing Science and Engineering, 125(1), 138-145.
https://doi.org/10.1115/1.1537741