[1] Lohwasser, D., & Chen, Z. (Eds.). (2009). Friction stir welding: From basics to applications. Elsevier.
[2] Cho, J. H., Boyce, D. E., & Dawson, P. R. (2005). Modeling strain hardening and texture evolution in friction stir welding of stainless steel. Materials Science and Engineering: A, 398(1-2), 146-163.
https://doi.org/10.1016/j.msea.2005.03.002[3] London, B., Mahoney, M., Bingel, W., Calabrese, M., & Waldron, D. (2001). Experimental methods for determining material flow in friction stir welds. In The Third International Symposium on Friction Stir Welding, Kobe, Japan (Vol. 27, p. 28).
[4] Mishra, R. S., & Ma, Z. Y. (2005). Friction stir welding and processing. Materials Science and Engineering: R: Reports, 50(1-2), 1-78.
https://doi.org/10.1016/j.mser.2005.07.001[5] Ajri, A., Rohatgi, N., Shin, Y. C. (2020). Analysis of defect formation mechanisms and their effects on weld strength during friction stir welding of Al 6061-T6 via experiments and finite element modeling. The International Journal of Advanced Manufacturing Technology, 107, 4621–4635.
https://doi.org/10.1007/s00170-020-05353-3[6] Asmare, A., Al-Sabur, R., Messele, E. (2020). Experimental investigation of friction Stir welding on 6061-T6 aluminum alloy using Taguchi-based GRA. Journal of. Metals, 10(11), 1480.
https://doi.org/10.3390/met10111480[7] Uday, M. B., Ahmad Fauzi, M. N., Zuhailawati, H., & Ismail, A. B. (2010). Advances in friction welding process: a review. Science and Technology of Welding and Joining, 15(7), 534–558.
https://doi.org/10.1179/136217110X12785889550064[8] Nandan, R., DebRoy, T., & Bhadeshia, H. K. D. H. (2008). Recent advances in friction-stir welding–process, weldment structure and properties. Progress in Materials Science, 53(6),.980-1023.
https://doi.org/10.1016/j.pmatsci.2008.05.001[9] Song, M., & Kovacevic, R. (2003). Numerical and experimental study of the heat transfer process in friction stir welding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(1),.73-85.
https://doi.org/10.1243/095440503762502297[10] Zhang, Z., & Zhang H. W. (2009). Numerical studies on controlling of process parameters in friction stir welding. Journal of Materials Processing Technology, 209(1), 241-270.
https://doi.org/10.1016/j.jmatprotec.2008.01.044[11] Zhang, H. W., Zhang, Z., & Chen, J. T. (2005). The finite element simulation of the friction stir welding process. Materials Science and Engineering: A, 403(1-2), 340-348.
https://doi.org/10.1016/j.msea.2005.05.052[12] Riahi, M., & Nazari, H. (2011). Analysis of transient temperature and residual thermal stresses in friction stir welding of aluminum alloy 6061-T6 via numerical simulation. The International Journal of Advanced Manufacturing Technology, 55(1), 143-152.
https://doi.org/10.1007/s00170-010-3038-z[13] Jafari, H., Mansouri, H., & Honarpisheh, M. (2019). Investigation of residual stress distribution of dissimilar Al-7075-T6 and Al-6061-T6 in the friction stir welding process strengthened with SiO2 nanoparticles. Journal of Manufacturing Processes, 43, 145-153.
https://doi.org/10.1016/j.jmapro.2019.05.023[14] Khandkar, M. Z. H., Khan, J. A., Reynolds, A. P., & Sutton, M. A. (2006). Predicting residual thermal stresses in friction stir welded metals. Journal of Materials Processing Technology, 174(1–3), 195–203.
https://doi.org/10.1016/j.jmatprotec.2005.12.013[15] Feng, Z., Wang, Z. L., David, S. A., & Sklad, P. S. (2007). Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6. Science and Technology of Welding and Joining, 12(4), 348-356.
https://doi.org/10.1179/174329307X197610[16] Buffa, G., Ducato, A., & Fratini, L. (2011). Numerical procedure for residual stresses prediction in friction stir welding. Finite Elements in Analysis and Design, 47(4), 470-476.
https://doi.org/10.1016/j.finel.2010.12.018[17] Ghahremani-Moghadam, D., Farhangdoost, K., & Masoudi Nejad, R. (2016). Microstructure and residual stress distributions under the influence of welding speed in friction stir welded 2024 aluminum alloy. Metallurgical and Materials Transactions B, 47(3), 2048-2062.
https://doi.org/10.1007/s11663-016-0611-3[18] Sadeghi, S., Ahmadi Najafabadi, M., Javadi, Y., & Mohammadisefat, M. (2013). Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminum plates. Materials & Design (1980-2015), 52, 870-880.
https://doi.org/10.1016/j.matdes.2013.06.032[19] Sun, H., Zhou, Q., Zhu, J., Shi, X., Sun, Z. (2020). Deformation analysis of a friction stir-welded thin sheet aluminum alloy joint. China Welding, 29(1), 56-62.
https://doi.org/10.12073/j.cw.20190902002[20] Melaku, L. E., Tura, A. D., Mamo, H. B., Santhosh, A. J., Ashok, N. (2022). Optimization and thermal analysis of friction stir welding on AA6061 aluminum alloys. Materials Today: Proceedings, 65(8), 3348-3356.
https://doi.org/10.1016/j.matpr.2022.05.463
[21] Chao, Y. J., & Qi, X. (1998). Thermal and thermo-mechanical modeling of friction stir welding of aluminum alloy 6061-T6. Journal of Materials Processing & Manufacturing Science, 7(2), 215-233.
https://doi.org/10.1106/LTKR-JFBM-RGMV-WVCF[22] Schmidt, H. N. B, Hattel, J., & Wert, J. (2004). An analytical model for the heat generation in friction stir welding. Modelling and Simulation in Materials Science and Engineering, 12(1), 143-157.
https://doi.org/10.1088/0965-0393/12/1/013[23] Ji, S. D., Jin, Y. Y., Yue, Y. M., Gao, S. S., Huang, Y. X., & Wang, L. (2013). Effect of temperature on material transfer behavior at different stages of friction stir welded 7075-T6 aluminum alloy. Journal of Materials Science & Technology, 29(10), 955-960.
https://doi.org/10.1016/j.jmst.2013.05.018[24] Chao, Y. J., Qi, Z., & Tang, W. (2003). Heat transfer in friction stir welding—experimental and numerical studies. Journal of Manufacturing Science and Engineering, 125(1), 138-145.
https://doi.org/10.1115/1.1537741