Optimization of Friction Stir Welding Parameters for Dissimilar Joining of Aluminum Alloy 2024 and Magnesium Alloy AZ91C Using Taguchi Method

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, Faculty of Engineering, Urmia University, Urmia, Iran

2 Department of Materials Science and Engineering, Faculty of Engineering, Urmia University, Urmia, Iran

Abstract

In this research, friction stir welding (FSW), a solid-state joining process, was employed to weld 5 mm thick sheets of aluminum alloy Al2024 and magnesium alloy AZ91C. The Taguchi design of experiments method was utilized to optimize the FSW process parameters including tool rotational speed (800-1600 rpm), welding speed (8-20 mm/min), and plunge depth (0.2-0.4 mm) to achieve maximum hardness in the weld zone. Microstructural characterization was studied using optical and scanning electron microscopes. The optimum parameters were found to have a 1600 rpm rotational speed, 8 mm/min welding speed, and 0.4 mm plunge depth, resulting in a maximum hardness of 148 HV in the stir zone (SZ). The layered or onion ring structure observed in the SZ was attributed to insufficient mixing and elemental diffusion between the dissimilar alloys due to the short interaction time during welding. Scanning electron microscopy revealed the formation of a continuous intermetallic layer at the aluminum-magnesium interface and the dispersion of magnesium particles in the aluminum matrix, contributing to the composite-like structure in certain regions. The hardness variation perpendicular to the weld line was correlated with the microstructural evolution, with the highest hardness observed in the fine-grained SZ due to grain refinement and precipitation hardening. The thermomechanically affected zone (TMAZ) exhibited lower hardness due to the presence of coarser precipitates and partially recrystallized grains. This research demonstrates the feasibility of joining Al2024 and AZ91C alloys using FSW and highlights the importance of optimizing process parameters to achieve desirable mechanical properties and microstructural characteristics in the dissimilar weld joint.

Keywords


[1] Friedrich, H. E., & Mordike, B. L. (2006). Magnesium technology: metallurgy, design data, applications. Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-30812-1
[2] Lohwasser, D., & Chen, Z. (Eds.). (2009). Friction stir welding: From basics to applications. Elsevier.
[3] Mishra, R. S., & Mahoney, M. W. (2007). Friction stir welding and processing. ASM international.
[4] Liu, L. (2010). Welding and joining of magnesium alloys. Woodhead Publishing.
[5] Davis, J. R. (1990). Properties and selection: nonferrous alloys and special-purpose materials. ASM international.
[6] Czerwinski, F. (Ed.). (2011). Magnesium alloys: design, processing and properties. BoD–Books on Demand.
[7] Davis, J. R. (1993). Aluminum and aluminum alloys. ASM international.
[8] Venkateshkannan, M., Rajkumar, V., & Sadeesh, P. (2014). Influences of tool geometry on metallurgical and mechanical properties of friction stir welded dissimilar AA 2024 and AA 5052. Procedia Engineering, 75, 154-158. https://doi.org/10.1016/j.proeng.2013.11.033
[9] Prasad, B. L., Neelaiah, G., Krishna, M. G., Ramana, S. V. V., Prakash, K. S., & Pradeep Kumar Reddy, G. (2018). Joining of AZ91 Mg alloy and Al6063 alloy sheets by friction stir welding. Journal of Magnesium and Alloys, 6(1), 71-76. https://doi.org/10.1016/j.jma.2017.12.004
[10] Li, P., You, G., Wen, H., Guo, W., Tong, X., & Li, S. (2019). Friction stir welding between the high-pressure die casting of AZ91 magnesium alloy and A383 aluminum alloy. Journal of Materials Processing Technology, 264, 55-63. https://doi.org/10.1016/j.jmatprotec.2018.08.044
[11] Jabraeili, R., Jafarian, H. R., Khajeh, R., Park, N., Kim, Y., Heidarzadeh, A., & Eivani, A. R. (2021). Effect of FSW process parameters on microstructure and mechanical properties of the dissimilar AA2024 Al alloy and 304 stainless steel joints. Materials Science and Engineering A, 814, 140981.
https://doi.org/10.1016/j.msea.2021.140981
[12] Vuherer, T., Milčić, M., Glodež, S., Milčić, D., Radović, L., & Kramberger, J. (2021). Fatigue and fracture behaviour of friction stir welded AA-2024-T351 joints. Theoretical and Applied Fracture Mechanics, 114, 103027. https://doi.org/10.1016/j.tafmec.2021.103027
[13] Hasani, B. M., Hedaiatmofidi, H., & Zarebidaki, A. (2021). Effect of friction stir process on the microstructure and corrosion behavior of AZ91 Mg alloy. Materials Chemistry and Physics, 267, 124672. https://doi.org/10.1016/j.matchemphys.2021.124672
[14] Geyer, M., Vidal, V., Pottier, T., Boher, C., & Rezai-Aria, F. (2021). Investigations on the material flow and the role of the resulting hooks on the mechanical behaviour of dissimilar friction stir welded Al2024-T3 to Ti-6Al-4V overlap joints. Journal of Materials Processing Technology, 292, 117057. https://doi.org/10.1016/j.jmatprotec.2021.117057
[15] Kumar, S. D., & Kumar, S. S. (2021). Effect of heat treatment conditions on ballistic behaviour of various zones of friction stir welded magnesium alloy joints. Transactions of Nonferrous Metals Society of China, 31(1), 156-166. https://doi.org/10.1016/S1003-6326(20)65484-X
[16] Khajeh, R., Jafarian, H. R., Seyedein, S. H., Jabraeili, R., Eivani, A. R., Park, N., & Heidarzadeh, A. (2021). Microstructure, mechanical and electrical properties of dissimilar friction stir welded 2024 aluminum alloy and copper joints. Journal of Materials Research and Technology, 14, 1945-1957. https://doi.org/10.1016/j.jmrt.2021.07.058
[17] Kandasamy, J., Prakasham, G., Chaitanya, P., & Eshwar, N. (2023). Experimental investigations on the position of plates in friction stir welding of dissimilar alloys. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.08.296
[18] Rouhi, S., Mostafapour, A., & Ashjari, M. (2016). Effects of welding environment on microstructure and mechanical properties of friction stir welded AZ91C magnesium alloy joints. Science and Technology of Welding and Joining, 21(1), 25-31.
https://doi.org/10.1179/1362171815Y.0000000058
[19] Rouhi, S., Dadashpour, M., Mostafapour, A., & Doniavi, A. (2017). Effects of multi-pass FSP on the β phase (Mg17Al12) distribution and mechanical properties of AZ91C magnesium alloy. Journal of Achievements in Materials and Manufacturing Engineering, 82(2), 77-85. https://doi.org/10.5604/01.3001.0010.2358
[20] Liu, C., Chen, D. L., Bhole, S., Cao, X., & Jahazi, M. (2009). Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy. Materials Characterization, 60(5), 370-376. https://doi.org/10.1016/j.matchar.2008.10.009
[21] Rouhi, S., Doniavi, A., & Shahbaz, M. (2023). Exploring the impact of friction stir welding parameters on mechanical performance and microstructure of AZ91C magnesium alloy joints using Taguchi method. Iranian Journal of Materials Forming, 10(3), 4-14.
https://doi.org/10.22099/ijmf.2023.47437.1258
[22] Abdollahzadeh, A., Shokuhfar, A., Cabrera, J. M., Zhilyaev, A. P., & Omidvar, H. (2019). In-situ nanocomposite in friction stir welding of 6061-T6 aluminum alloy to AZ31 magnesium alloy. Journal of Materials Processing Technology, 263, 296-307. https://doi.org/10.1016/j.jmatprotec.2018.08.025
[23] Raturi, M., & Bhattacharya, A. (2023). Temperature variation and influence on local mechanical properties assessed by nanoindentation in AA6061-AA7075 dissimilar FSW. International Communications in Heat and Mass Transfer, 148, 107079.
https://doi.org/10.1016/j.icheatmasstransfer.2023.107079
[24] Hu, Z., Yuan, S., & Wang, X. (2011). Effect of post-weld heat treatment on the microstructure and plastic deformation behavior of friction stir welded 2024. Materials & Design, 32(10), 5045-5050. https://doi.org/10.1016/j.matdes.2011.05.035
[25] Amancio-Filho, S. T., Sheikhi, S., Dos Santos, J. F., & Bolfarini, C. (2008). Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4. Journal of Materials Processing Technology, 206(1-3), 132-142. https://doi.org/10.1016/j.jmatprotec.2007.12.008
[26] de Viveiros, B. V. G., da Silva, R. M. P., Donatus, U., & Costa, I. (2023). Welding and galvanic coupling effects on the electrochemical activity of dissimilar AA2050 and AA7050 aluminum alloys welded by Friction Stir Welding (FSW). Electrochimica Acta, 449, 142196.
https://doi.org/10.1016/j.electacta.2023.142196
[27] Rizehvandy, S., Salimi, M., & Nasiri, A. A. (2019). Finite element simulation of dynamic recrystallization phenomenon and evaluation of effective factors in friction stir welding in AA-2024 aluminum alloy. Metallurgical Engineering, 22(4), 254-266.
https://doi.org/10.22076/me.2020.107411.1246
[28] Amancio-Filho, S. T., Sheikhi, S., Dos Santos, J. F., & Bolfarini, C. (2008). Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4. Journal of Materials Processing Technology, 206(1-3), 132-142. https://doi.org/10.1016/j.jmatprotec.2007.12.008
[29] Mir, F. A., Khan, N. Z., Parvez, S., & Siddiquee, A. N. (2024). Investigations on surface properties of friction stir welded dissimilar AA2024-T3 and 304 stainless steel joints. Tribology International, 193, 109312. https://doi.org/10.1016/j.triboint.2024.109312
[30] Pasetti-Roza, A., Victoria-Hernandez, J., da Cunha, P. H. C. P., de Lima Lessa, C. R., Bergmann, L. A., Kurz, G., & Klusemann, B. (2024). Behavior of microstructure and mechanical properties in the stir zone of friction stir welded ME21 magnesium alloy. Journal of Materials Research and Technology, 29, 4895-4901. https://doi.org/10.1016/j.jmrt.2024.02.188