[1] Friedrich, H. E., & Mordike, B. L. (2006). Magnesium technology: metallurgy, design data, applications. Springer Berlin, Heidelberg.
https://doi.org/10.1007/3-540-30812-1[2] Lohwasser, D., & Chen, Z. (Eds.). (2009). Friction stir welding: From basics to applications. Elsevier.
[3] Mishra, R. S., & Mahoney, M. W. (2007). Friction stir welding and processing. ASM international.
[4] Liu, L. (2010). Welding and joining of magnesium alloys. Woodhead Publishing.
[5] Davis, J. R. (1990). Properties and selection: nonferrous alloys and special-purpose materials. ASM international.
[6] Czerwinski, F. (Ed.). (2011). Magnesium alloys: design, processing and properties. BoD–Books on Demand.
[7] Davis, J. R. (1993). Aluminum and aluminum alloys. ASM international.
[8] Venkateshkannan, M., Rajkumar, V., & Sadeesh, P. (2014). Influences of tool geometry on metallurgical and mechanical properties of friction stir welded dissimilar AA 2024 and AA 5052. Procedia Engineering, 75, 154-158.
https://doi.org/10.1016/j.proeng.2013.11.033[9] Prasad, B. L., Neelaiah, G., Krishna, M. G., Ramana, S. V. V., Prakash, K. S., & Pradeep Kumar Reddy, G. (2018). Joining of AZ91 Mg alloy and Al6063 alloy sheets by friction stir welding. Journal of Magnesium and Alloys, 6(1), 71-76.
https://doi.org/10.1016/j.jma.2017.12.004[10] Li, P., You, G., Wen, H., Guo, W., Tong, X., & Li, S. (2019). Friction stir welding between the high-pressure die casting of AZ91 magnesium alloy and A383 aluminum alloy. Journal of Materials Processing Technology, 264, 55-63.
https://doi.org/10.1016/j.jmatprotec.2018.08.044[11] Jabraeili, R., Jafarian, H. R., Khajeh, R., Park, N., Kim, Y., Heidarzadeh, A., & Eivani, A. R. (2021). Effect of FSW process parameters on microstructure and mechanical properties of the dissimilar AA2024 Al alloy and 304 stainless steel joints. Materials Science and Engineering A, 814, 140981.
https://doi.org/10.1016/j.msea.2021.140981[12] Vuherer, T., Milčić, M., Glodež, S., Milčić, D., Radović, L., & Kramberger, J. (2021). Fatigue and fracture behaviour of friction stir welded AA-2024-T351 joints. Theoretical and Applied Fracture Mechanics, 114, 103027.
https://doi.org/10.1016/j.tafmec.2021.103027[13] Hasani, B. M., Hedaiatmofidi, H., & Zarebidaki, A. (2021). Effect of friction stir process on the microstructure and corrosion behavior of AZ91 Mg alloy. Materials Chemistry and Physics, 267, 124672.
https://doi.org/10.1016/j.matchemphys.2021.124672[14] Geyer, M., Vidal, V., Pottier, T., Boher, C., & Rezai-Aria, F. (2021). Investigations on the material flow and the role of the resulting hooks on the mechanical behaviour of dissimilar friction stir welded Al2024-T3 to Ti-6Al-4V overlap joints. Journal of Materials Processing Technology, 292, 117057.
https://doi.org/10.1016/j.jmatprotec.2021.117057[15] Kumar, S. D., & Kumar, S. S. (2021). Effect of heat treatment conditions on ballistic behaviour of various zones of friction stir welded magnesium alloy joints. Transactions of Nonferrous Metals Society of China, 31(1), 156-166.
https://doi.org/10.1016/S1003-6326(20)65484-X
[16] Khajeh, R., Jafarian, H. R., Seyedein, S. H., Jabraeili, R., Eivani, A. R., Park, N., & Heidarzadeh, A. (2021). Microstructure, mechanical and electrical properties of dissimilar friction stir welded 2024 aluminum alloy and copper joints. Journal of Materials Research and Technology, 14, 1945-1957.
https://doi.org/10.1016/j.jmrt.2021.07.058[17] Kandasamy, J., Prakasham, G., Chaitanya, P., & Eshwar, N. (2023). Experimental investigations on the position of plates in friction stir welding of dissimilar alloys. Materials Today: Proceedings.
https://doi.org/10.1016/j.matpr.2023.08.296[18] Rouhi, S., Mostafapour, A., & Ashjari, M. (2016). Effects of welding environment on microstructure and mechanical properties of friction stir welded AZ91C magnesium alloy joints. Science and Technology of Welding and Joining, 21(1), 25-31.
https://doi.org/10.1179/1362171815Y.0000000058[19] Rouhi, S., Dadashpour, M., Mostafapour, A., & Doniavi, A. (2017). Effects of multi-pass FSP on the β phase (Mg17Al12) distribution and mechanical properties of AZ91C magnesium alloy. Journal of Achievements in Materials and Manufacturing Engineering, 82(2), 77-85.
https://doi.org/10.5604/01.3001.0010.2358[20] Liu, C., Chen, D. L., Bhole, S., Cao, X., & Jahazi, M. (2009). Polishing-assisted galvanic corrosion in the dissimilar friction stir welded joint of AZ31 magnesium alloy to 2024 aluminum alloy. Materials Characterization, 60(5), 370-376.
https://doi.org/10.1016/j.matchar.2008.10.009[21] Rouhi, S., Doniavi, A., & Shahbaz, M. (2023). Exploring the impact of friction stir welding parameters on mechanical performance and microstructure of AZ91C magnesium alloy joints using Taguchi method. Iranian Journal of Materials Forming, 10(3), 4-14.
https://doi.org/10.22099/ijmf.2023.47437.1258[22] Abdollahzadeh, A., Shokuhfar, A., Cabrera, J. M., Zhilyaev, A. P., & Omidvar, H. (2019). In-situ nanocomposite in friction stir welding of 6061-T6 aluminum alloy to AZ31 magnesium alloy. Journal of Materials Processing Technology, 263, 296-307.
https://doi.org/10.1016/j.jmatprotec.2018.08.025[23] Raturi, M., & Bhattacharya, A. (2023). Temperature variation and influence on local mechanical properties assessed by nanoindentation in AA6061-AA7075 dissimilar FSW. International Communications in Heat and Mass Transfer, 148, 107079.
https://doi.org/10.1016/j.icheatmasstransfer.2023.107079[24] Hu, Z., Yuan, S., & Wang, X. (2011). Effect of post-weld heat treatment on the microstructure and plastic deformation behavior of friction stir welded 2024. Materials & Design, 32(10), 5045-5050.
https://doi.org/10.1016/j.matdes.2011.05.035[25] Amancio-Filho, S. T., Sheikhi, S., Dos Santos, J. F., & Bolfarini, C. (2008). Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4. Journal of Materials Processing Technology, 206(1-3), 132-142.
https://doi.org/10.1016/j.jmatprotec.2007.12.008[26] de Viveiros, B. V. G., da Silva, R. M. P., Donatus, U., & Costa, I. (2023). Welding and galvanic coupling effects on the electrochemical activity of dissimilar AA2050 and AA7050 aluminum alloys welded by Friction Stir Welding (FSW). Electrochimica Acta, 449, 142196.
https://doi.org/10.1016/j.electacta.2023.142196[27] Rizehvandy, S., Salimi, M., & Nasiri, A. A. (2019). Finite element simulation of dynamic recrystallization phenomenon and evaluation of effective factors in friction stir welding in AA-2024 aluminum alloy. Metallurgical Engineering, 22(4), 254-266.
https://doi.org/10.22076/me.2020.107411.1246[28] Amancio-Filho, S. T., Sheikhi, S., Dos Santos, J. F., & Bolfarini, C. (2008). Preliminary study on the microstructure and mechanical properties of dissimilar friction stir welds in aircraft aluminium alloys 2024-T351 and 6056-T4. Journal of Materials Processing Technology, 206(1-3), 132-142.
https://doi.org/10.1016/j.jmatprotec.2007.12.008[29] Mir, F. A., Khan, N. Z., Parvez, S., & Siddiquee, A. N. (2024). Investigations on surface properties of friction stir welded dissimilar AA2024-T3 and 304 stainless steel joints. Tribology International, 193, 109312.
https://doi.org/10.1016/j.triboint.2024.109312[30] Pasetti-Roza, A., Victoria-Hernandez, J., da Cunha, P. H. C. P., de Lima Lessa, C. R., Bergmann, L. A., Kurz, G., & Klusemann, B. (2024). Behavior of microstructure and mechanical properties in the stir zone of friction stir welded ME21 magnesium alloy. Journal of Materials Research and Technology, 29, 4895-4901.
https://doi.org/10.1016/j.jmrt.2024.02.188