Constitutive Modeling and Microstructural Evolution of Hot Deformed Ti-6Al-4V Alloy Starting with Initial Fully Lamellar Microstructure

Document Type : Research Paper

Authors

1 Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, P.O. Box: 14395-836, Tehran, Iran

2 Atomic Energy Organization of Iran, P.O. Box: 14155-1339, Tehran, Iran

Abstract

Ti–6Al–4V alloy has gained widespread popularity due to its extensive applications, including nuclear and aircraft structural components, machine parts, and notably medical equipment parts. Gaining a comprehensive understanding of the material's deformation behavior and microstructure evolution during the hot working process is crucial in order to attain the desired dimensions and the final mechanical properties of a product. In this study, the hot deformation behavior of the fully lamellar Ti-6Al-4V alloy was investigated using the hot compressive test at different temperatures of 700-1050 ◦C and strain rates of 0.001-1 s-1. The deformation stress, strain rate, and temperature were correlated using Arrhenius constitutive equations in α + β and β-phases. Finally, the activation energy values were calculated at almost 630 kJ/mol and 293 kJ/mol in α + β and β-phases, respectively. Based on true stress-strain curves, dynamic recrystallization was the dominant hot deformation mechanism at strain rates of 0.1 s-1 or lower. On the other hand, dynamic recovery occurred at a low temperature of 700 ◦C, and high temperatures of 1000-1050 ◦C with high strain rates of 1 s-1. The dynamic strain aging was visible as the serrated effects on deformation curves. The hot deformed microstructures of Ti-6Al-4V alloy were changed through geometric dynamic recrystallization, lamellar kinking and fragmentation, and globularization. Microstructural evolution at low temperatures immediately initiated after peak stress with dynamic recrystallization and lamellar kinking. At high temperatures of 850-900 ◦C, globularization was combined with other softening mechanisms, and the lamellar microstructure was changed to equiaxed grains.

Keywords


[1]  Ji, S. M., Jang, S. M., Lee, Y. S., Kwak, H. M., Choi, J. M., & Joun, M. S. (2022). Characterization of Ti-6Al-4V alloy in the temperature range of warm metal forming and fracture analysis of the warm capping process. Journal of Materials Research and Technology, 18, 1590-1606. https://doi.org/10.1016/j.jmrt.2022.03.066
[2]  Bignon, Q., Martin, F., Auzoux, Q., Miserque, F., Tabarant, M., Latu-Romain, L., & Wouters, Y. (2019). Oxide formation on titanium alloys in primary water of nuclear pressurised water reactor. Corrosion Science, 150, 32-41. https://doi.org/10.1016/j.corsci.2019.01.020
[3]  Leyens, C., & Peters, M. (Eds.). (2006). Titanium and titanium alloys: fundamentals and applications. Wiley-vch. 
[4]  Donachie, M. J. (2000). Titanium: a technical guide. ASM international. 
[5]  Gheshlaghi, H., Alimirzaloo, V., Shahbaz, M., & Amiri, A. (2022). Numerical study and optimization of the thermomechanical procedure in forging of two-phase Ti-6Al-4V Alloy for artificial hip joint implant. Iranian Journal of Materials Forming, 9(3), 31-43. https://doi.org/10.22099/ijmf.2022.43334.1219
[6]  Ishida, T., Wakai, E., Makimura, S., Casella, A. M., Edwards, D. J., PrabhakaranSenor., D. J., Ammigan, K., Bidhar, S., Hurh, P. G., Pellemoine, F., Densham, C. J., Fitton, M. D., Bennett, J. M., Kim, D., Simos, N., Hagiwara, M., Kawamura, N., Meigo, Sh., & Yonehara, K (2020). Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: Radiation-induced omega phase transformation in Ti-6Al-4V. Journal of Nuclear Materials, 541, 152413. https://doi.org/10.1016/j.jnucmat.2020.152413
[7]  Ishida, T., Wakai, E., Makimura, Sh., Hurh, P. G., Ammigan, K., Casella, A. M., Edwards, D. J., Senor, D. J., Densham, C. J., Fitton, M., Bennett, J., Kim, D., Simos, N., Calviani, M., & Torregrosa Martin, C (2020). Radiation damage studies on titanium alloys as high intensity proton accelerator beam window materials. In Proceedings of the 14th International Workshop on Spallation Materials Technology (p. 041001). https://doi.org/10.7566/JPSCP.28.041001
[8]  Chen, G., Ren, C., Qin, X., & Li, J. (2015). Temperature dependent work hardening in Ti–6Al–4V alloy over large temperature and strain rate ranges: Experiments and constitutive modeling. Materials & Design, 83, 598-610. https://doi.org/10.1016/j.matdes.2015.06.048
[9]  Wu, G. Q., Shi, C. L., Sha, W., Sha, A. X., & Jiang, H. R. (2013). Effect of microstructure on the fatigue properties of Ti–6Al–4V titanium alloys. Materials & Design (1980-2015), 46, 668-674. https://doi.org/10.1016/j.matdes.2012.10.059
[10] Lin, Y. C., Jiang, X. Y., Shuai, C. J., Zhao, C. Y., He, D. G., Chen, M. S., & Chen, C. (2018). Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy. Materials Science and Engineering: A, 711, 293-302. https://doi.org/10.1016/j.msea.2017.11.044
[11] Jia, M. T., Zhang, D. L., Gabbitas, B., Liang, J. M., & Kong, C. (2015). A novel Ti–6Al–4V alloy microstructure with very high strength and good ductility. Scripta Materialia, 107, 10-13. https://doi.org/10.1016/j.scriptamat.2015.05.008
[12] Jiang, F., Fei, L., Jiang, H., Zhang, Y., Feng, Z., & Zhao, S. (2023). Constitutive model research on the hot deformation behavior of Ti6Al4V alloy under wide temperatures. Journal of Materials Research and Technology, 23, 1062-1074. https://doi.org/10.1016/j.jmrt.2023.01.021
[13] Bodunrin, M. O., Chown, L. H., van der Merwe, J. W., & Alaneme, K. K. (2019). Hot working of Ti-6Al-4V with a complex initial microstructure. International Journal of Material Forming, 12, 857-874. https://doi.org/10.1007/s12289-018-1457-9
[14] Huang, X., Zang, Y., & Guan, B. (2021). Constitutive models and microstructure evolution of Ti-6Al-4V alloy during the hot compressive process. Materials Research Express, 8(1), 016534. https://doi.org/10.1088/2053-1591/abdaf0
[15] Jha, J. S., Tewari, A., Mishra, S., & Toppo, S. (2017). Constitutive relations for Ti-6Al-4V hot working. Procedia Engineering, 173, 755-762. https://doi.org/10.1016/j.proeng.2016.12.089
[16] Bruschi, S., Poggio, S., Quadrini, F., & Tata, M. E. (2004). Workability of Ti–6Al–4V alloy at high temperatures and strain rates. Materials Letters, 58(27-28), 3622-3629. https://doi.org/10.1016/j.matlet.2004.06.058
[17] Momeni, A., & Abbasi, S. M. (2010). Effect of hot working on flow behavior of Ti–6Al–4V alloy in single phase and two phase regions. Materials & Design, 31(8), 3599-3604. https://doi.org/10.1016/j.matdes.2010.01.060
[18] Hu, M., Dong, L., Zhang, Z., Lei, X., Yang, R., & Sha, Y. (2018). Correction of flow curves and constitutive modelling of a Ti-6Al-4V alloy. Metals, 8(4), 256. https://doi.org/10.3390/met8040256
[19] Wu, Y., Liu, H., Xu, J., Zhang, Z., & Xue, Y. (2020). Constitutive equations and processing map for hot deformation of a Ti-6Al-4V alloy prepared with spark-plasma sintering. Materials & Technologies/Materiali in Tehnologije, 54(1). https://doi.org/10.17222/mit.2019.087
[20] Jha, J. S., Toppo, S. P., Singh, R., Tewari, A., & Mishra, S. K. (2019). Flow stress constitutive relationship between lamellar and equiaxed microstructure during hot deformation of Ti-6Al-4V. Journal of Materials Processing Technology, 270, 216-227. https://doi.org/10.1016/j.jmatprotec.2019.02.030
[21] Lin, Y. C., Zhao, C. Y., Chen, M. S., & Chen, D. D. (2016). A novel constitutive model for hot deformation behaviors of Ti–6Al–4V alloy based on probabilistic method. Applied Physics A, 122, 1-9. https://doi.org/10.1007/s00339-016-0248-8
[22] Lin, Y. C., Wu, Q., Pang, G. D., Jiang, X. Y., & He, D. G. (2020). Hot tensile deformation mechanism and dynamic softening behavior of Ti–6Al–4V alloy with thick lamellar microstructures. Advanced Engineering Materials, 22 (3), 1901193. https://doi.org/10.1002/adem.201901193
[23] Dhanya, M. S., Anoop, S., Manwatkar, S. K., Kumar, R. R., Gupta, R. K., & Narayana Murty, S. V. S. (2024). Hot workability and microstructure control of Ti6Al4V alloy. Journal of Materials Engineering and Performance, 1-17. https://doi.org/10.1007/s11665-024-09228-6
[24] Ebrahimi, R., & Najafizadeh, A. (2004). A new method for evaluation of friction in bulk metal forming. Journal of Materials Processing Technology, 152(2), 136-143. https://doi.org/10.1016/j.jmatprotec.2004.03.029
[25] Gostariani, R., & Asadi Asadabad, M. (2023). Studying the hot deformation behavior of Zr-1Nb alloy using processing map and kinetic analysis. Journal of Materials Engineering and Performance, 32(5), 2151-2164. https://doi.org/10.1007/s11665-022-07267-5
[26] Sellars, C. M., & McTegart, W. J. (1966). On the mechanism of hot deformation. Acta Metallurgica, 14(9), 1136-1138. https://doi.org/10.1016/0001-6160(66)90207-0
[27] Zener, C., & Hollomon, J. H. (1944). Effect of strain rate upon plastic flow of steel. Journal of Applied Physics, 15(1), 22-32. https://doi.org/10.1063/1.1707363
[28] Lin, Y. C., & Chen, X. M. (2011). A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials & Design, 32(4), 1733-1759. https://doi.org/10.1016/j.matdes.2010.11.048
[29] Kazim, S. M., Prasad, K., & Chakraborty, P. (2023). Analysis of dynamic strain aging in titanium alloys using CPFEM. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.07.268
[30] Prasad, K., & Varma, V. K. (2008). Serrated flow behavior in a near alpha titanium alloy IMI 834. Materials Science and Engineering: A, 486(1-2), 158-166. https://doi.org/10.1016/j.msea.2007.09.020
[31] Zhang, Z. X., Qu, S. J., Feng, A. H., Shen, J., & Chen, D. L. (2017). Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure. Journal of Alloys and Compounds, 718, 170-181. https://doi.org/10.1016/j.jallcom.2017.05.097
[32] Jonas, J. J., Sellars, C. M., & Tegart, W. M. (1969). Strength and structure under hot-working conditions. Metallurgical Reviews, 14(1), 1-24. https://doi.org/10.1179/mtlr.1969.14.1.1
[33] Ning, Y. Q., Xie, B. C., Liang, H. Q., Li, H., Yang, X. M., & Guo, H. Z. (2015). Dynamic softening behavior of TC18 titanium alloy during hot deformation. Materials & Design, 71, 68-77. https://doi.org/10.1016/j.matdes.2015.01.009
[34] Kim, J. H., Semiatin, S. L., Lee, Y. H., & Lee, C. S. (2011). A self-consistent approach for modeling the flow behavior of the alpha and beta phases in Ti-6Al-4V. Metallurgical and Materials Transactions A, 42, 1805-1814. https://doi.org/10.1007/s11661-010-0567-x
[35] Guo, B., & Jonas, J. J. (2021). Dynamic transformation during the high temperature deformation of titanium alloys. Journal of Alloys and Compounds, 884, 161179. https://doi.org/10.1016/j.jallcom.2021.161179
[36] Guo, B., Semiatin, S. L., & Jonas, J. J. (2019). Dynamic transformation during the high temperature deformation of two-phase titanium alloys. Materials Science and Engineering: A, 761, 138047. https://doi.org/10.1016/j.msea.2019.138047
[37] Zhang, J., Li, H., & Zhan, M. (2020). Review on globularization of titanium alloy with lamellar colony. Manufacturing Review, 7, 18. https://doi.org/10.1051/mfreview/2020015
[38] Ezatpour, H. R., Ebrahimi, G. R., & Zarghani, F. (2024). Effect of processing parameters on the morphology of α-phase in Ti-6Al-4V alloy during the two-step hot deformation. Iranian Journal of Materials Forming, 10(3), 54-62. https://doi.org/ 10.22099/ijmf.2024.49049.1277