[1] Ji, S. M., Jang, S. M., Lee, Y. S., Kwak, H. M., Choi, J. M., & Joun, M. S. (2022). Characterization of Ti-6Al-4V alloy in the temperature range of warm metal forming and fracture analysis of the warm capping process. Journal of Materials Research and Technology, 18, 1590-1606.
https://doi.org/10.1016/j.jmrt.2022.03.066
[2] Bignon, Q., Martin, F., Auzoux, Q., Miserque, F., Tabarant, M., Latu-Romain, L., & Wouters, Y. (2019). Oxide formation on titanium alloys in primary water of nuclear pressurised water reactor. Corrosion Science, 150, 32-41.
https://doi.org/10.1016/j.corsci.2019.01.020
[3] Leyens, C., & Peters, M. (Eds.). (2006). Titanium and titanium alloys: fundamentals and applications. Wiley-vch.
[4] Donachie, M. J. (2000). Titanium: a technical guide. ASM international.
[5] Gheshlaghi, H., Alimirzaloo, V., Shahbaz, M., & Amiri, A. (2022). Numerical study and optimization of the thermomechanical procedure in forging of two-phase Ti-6Al-4V Alloy for artificial hip joint implant. Iranian Journal of Materials Forming, 9(3), 31-43.
https://doi.org/10.22099/ijmf.2022.43334.1219
[6] Ishida, T., Wakai, E., Makimura, S., Casella, A. M., Edwards, D. J., PrabhakaranSenor., D. J., Ammigan, K., Bidhar, S., Hurh, P. G., Pellemoine, F., Densham, C. J., Fitton, M. D., Bennett, J. M., Kim, D., Simos, N., Hagiwara, M., Kawamura, N., Meigo, Sh., & Yonehara, K (2020). Tensile behavior of dual-phase titanium alloys under high-intensity proton beam exposure: Radiation-induced omega phase transformation in Ti-6Al-4V. Journal of Nuclear Materials, 541, 152413.
https://doi.org/10.1016/j.jnucmat.2020.152413
[7] Ishida, T., Wakai, E., Makimura, Sh., Hurh, P. G., Ammigan, K., Casella, A. M., Edwards, D. J., Senor, D. J., Densham, C. J., Fitton, M., Bennett, J., Kim, D., Simos, N., Calviani, M., & Torregrosa Martin, C (2020). Radiation damage studies on titanium alloys as high intensity proton accelerator beam window materials. In Proceedings of the 14th International Workshop on Spallation Materials Technology (p. 041001).
https://doi.org/10.7566/JPSCP.28.041001
[8] Chen, G., Ren, C., Qin, X., & Li, J. (2015). Temperature dependent work hardening in Ti–6Al–4V alloy over large temperature and strain rate ranges: Experiments and constitutive modeling. Materials & Design, 83, 598-610.
https://doi.org/10.1016/j.matdes.2015.06.048
[9] Wu, G. Q., Shi, C. L., Sha, W., Sha, A. X., & Jiang, H. R. (2013). Effect of microstructure on the fatigue properties of Ti–6Al–4V titanium alloys. Materials & Design (1980-2015), 46, 668-674.
https://doi.org/10.1016/j.matdes.2012.10.059
[10] Lin, Y. C., Jiang, X. Y., Shuai, C. J., Zhao, C. Y., He, D. G., Chen, M. S., & Chen, C. (2018). Effects of initial microstructures on hot tensile deformation behaviors and fracture characteristics of Ti-6Al-4V alloy. Materials Science and Engineering: A, 711, 293-302.
https://doi.org/10.1016/j.msea.2017.11.044
[11] Jia, M. T., Zhang, D. L., Gabbitas, B., Liang, J. M., & Kong, C. (2015). A novel Ti–6Al–4V alloy microstructure with very high strength and good ductility. Scripta Materialia, 107, 10-13.
https://doi.org/10.1016/j.scriptamat.2015.05.008
[12] Jiang, F., Fei, L., Jiang, H., Zhang, Y., Feng, Z., & Zhao, S. (2023). Constitutive model research on the hot deformation behavior of Ti6Al4V alloy under wide temperatures. Journal of Materials Research and Technology, 23, 1062-1074.
https://doi.org/10.1016/j.jmrt.2023.01.021
[13] Bodunrin, M. O., Chown, L. H., van der Merwe, J. W., & Alaneme, K. K. (2019). Hot working of Ti-6Al-4V with a complex initial microstructure. International Journal of Material Forming, 12, 857-874.
https://doi.org/10.1007/s12289-018-1457-9
[14] Huang, X., Zang, Y., & Guan, B. (2021). Constitutive models and microstructure evolution of Ti-6Al-4V alloy during the hot compressive process. Materials Research Express, 8(1), 016534.
https://doi.org/10.1088/2053-1591/abdaf0
[16] Bruschi, S., Poggio, S., Quadrini, F., & Tata, M. E. (2004). Workability of Ti–6Al–4V alloy at high temperatures and strain rates. Materials Letters, 58(27-28), 3622-3629.
https://doi.org/10.1016/j.matlet.2004.06.058
[17] Momeni, A., & Abbasi, S. M. (2010). Effect of hot working on flow behavior of Ti–6Al–4V alloy in single phase and two phase regions. Materials & Design, 31(8), 3599-3604.
https://doi.org/10.1016/j.matdes.2010.01.060
[18] Hu, M., Dong, L., Zhang, Z., Lei, X., Yang, R., & Sha, Y. (2018). Correction of flow curves and constitutive modelling of a Ti-6Al-4V alloy. Metals, 8(4), 256.
https://doi.org/10.3390/met8040256
[19] Wu, Y., Liu, H., Xu, J., Zhang, Z., & Xue, Y. (2020). Constitutive equations and processing map for hot deformation of a Ti-6Al-4V alloy prepared with spark-plasma sintering. Materials & Technologies/Materiali in Tehnologije, 54(1).
https://doi.org/10.17222/mit.2019.087
[20] Jha, J. S., Toppo, S. P., Singh, R., Tewari, A., & Mishra, S. K. (2019). Flow stress constitutive relationship between lamellar and equiaxed microstructure during hot deformation of Ti-6Al-4V. Journal of Materials Processing Technology, 270, 216-227.
https://doi.org/10.1016/j.jmatprotec.2019.02.030
[21] Lin, Y. C., Zhao, C. Y., Chen, M. S., & Chen, D. D. (2016). A novel constitutive model for hot deformation behaviors of Ti–6Al–4V alloy based on probabilistic method. Applied Physics A, 122, 1-9.
https://doi.org/10.1007/s00339-016-0248-8
[22] Lin, Y. C., Wu, Q., Pang, G. D., Jiang, X. Y., & He, D. G. (2020). Hot tensile deformation mechanism and dynamic softening behavior of Ti–6Al–4V alloy with thick lamellar microstructures. Advanced Engineering Materials, 22 (3), 1901193.
https://doi.org/10.1002/adem.201901193
[23] Dhanya, M. S., Anoop, S., Manwatkar, S. K., Kumar, R. R., Gupta, R. K., & Narayana Murty, S. V. S. (2024). Hot workability and microstructure control of Ti6Al4V alloy. Journal of Materials Engineering and Performance, 1-17.
https://doi.org/10.1007/s11665-024-09228-6
[25] Gostariani, R., & Asadi Asadabad, M. (2023). Studying the hot deformation behavior of Zr-1Nb alloy using processing map and kinetic analysis. Journal of Materials Engineering and Performance, 32(5), 2151-2164.
https://doi.org/10.1007/s11665-022-07267-5
[27] Zener, C., & Hollomon, J. H. (1944). Effect of strain rate upon plastic flow of steel. Journal of Applied Physics, 15(1), 22-32.
https://doi.org/10.1063/1.1707363
[28] Lin, Y. C., & Chen, X. M. (2011). A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Materials & Design, 32(4), 1733-1759.
https://doi.org/10.1016/j.matdes.2010.11.048
[31] Zhang, Z. X., Qu, S. J., Feng, A. H., Shen, J., & Chen, D. L. (2017). Hot deformation behavior of Ti-6Al-4V alloy: Effect of initial microstructure. Journal of Alloys and Compounds, 718, 170-181.
https://doi.org/10.1016/j.jallcom.2017.05.097
[33] Ning, Y. Q., Xie, B. C., Liang, H. Q., Li, H., Yang, X. M., & Guo, H. Z. (2015). Dynamic softening behavior of TC18 titanium alloy during hot deformation. Materials & Design, 71, 68-77.
https://doi.org/10.1016/j.matdes.2015.01.009
[34] Kim, J. H., Semiatin, S. L., Lee, Y. H., & Lee, C. S. (2011). A self-consistent approach for modeling the flow behavior of the alpha and beta phases in Ti-6Al-4V. Metallurgical and Materials Transactions A, 42, 1805-1814.
https://doi.org/10.1007/s11661-010-0567-x
[36] Guo, B., Semiatin, S. L., & Jonas, J. J. (2019). Dynamic transformation during the high temperature deformation of two-phase titanium alloys. Materials Science and Engineering: A, 761, 138047.
https://doi.org/10.1016/j.msea.2019.138047
[38] Ezatpour, H. R., Ebrahimi, G. R., & Zarghani, F. (2024). Effect of processing parameters on the morphology of α-phase in Ti-6Al-4V alloy during the two-step hot deformation. Iranian Journal of Materials Forming, 10(3), 54-62.
https://doi.org/ 10.22099/ijmf.2024.49049.1277