[3] Fang, R., Zhang, E., Xu, L., & Wei, S. (2010). Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells. Journal of Nanoscience and Nanotechnology, 10(11), 7747-7751.
https://doi.org/10.1166/jnn.2010.2831
[4] Qu, H., Fu, H., Han, Z., & Sun, Y. (2019). Biomaterials for bone tissue engineering scaffolds: A review. RSC Advances, 9(45), 26252-26262.
https://doi.org/10.1039/C9RA05214C
[5] Ghassemi, T., Shahroodi, A., Ebrahimzadeh, M. H., Mousavian, A., Movaffagh, J., & Moradi, A. (2018). Current concepts in scaffolding for bone tissue engineering. Archives of Bone and Joint Surgery, 6(2), 90-99.
https://doi.org/10.22038/abjs.2018.26340.1713
[6] Suamte, L., Tirkey, A., Barman, J., & Babu, P. J. (2023). Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Materials in Manufacturing, 1, 100011.
https://doi.org/10.1016/j.smmf.2022.100011
[7] Farzamfar, S., Naseri-Nosar, M., Sahrapeyma, H., Ehterami, A., Goodarzi, A., Rahmati, M., Ahmadi Lakalayeh, G., Ghorbani, S., Vaez, A., & Salehi, M. (2019). Tetracycline hydrochloride-containing poly (ε-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: In vitro and in vivo study. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(8), 472-479.
https://doi.org/10.1080/00914037.2018.1466133
[8] Perez-Puyana, V., Jiménez-Rosado, M., Romero, A., & Guerrero, A. (2020). Polymer-based scaffolds for soft-tissue engineering. Polymers, 12(7), 1566.
https://doi.org/10.3390/polym12071566
[9] Abodunrin, O. D., Bricha, M., & El Mabrouk, K. (2024). Developments in 3D-printed polymeric Materials and Bioactive Materials Integration for Biomedical Applications. In Reference Module in Materials Science and Materials Engineering. Elsevier.
https://doi.org/10.1016/B978-0-323-95486-0.00028-4
[11] Patrício, T., Domingos, M., Gloria, A., D'Amora, U., Coelho, J. F., & Bártolo, P. J. (2014). Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyping Journal, 20(2), 145-156.
https://doi.org/10.1108/RPJ-04-2012-0037
[15] Hassanajili, S., Karami-Pour, A., Oryan, A., & Talaei-Khozani, T. (2019). Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Materials Science and Engineering: C, 104, 109960.
https://doi.org/10.1016/j.msec.2019.109960
[16] Hutmacher, D. W. (2001). Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. Journal of Biomaterials Science, Polymer Edition, 12(1), 107-124.
https://doi.org/10.1163/156856201744489
[17] Sola, A., Bertacchini, J., D'Avella, D., Anselmi, L., Maraldi, T., Marmiroli, S., & Messori, M. (2019). Development of solvent-casting particulate leaching (SCPL) polymer scaffolds as improved three-dimensional supports to mimic the bone marrow niche. Materials Science and Engineering: C, 96, 153-165.
https://doi.org/10.1016/j.msec.2018.10.086
[18] Xu, T., Yao, Q., Miszuk, J. M., Sanyour, H. J., Hong, Z., Sun, H., & Fong, H. (2018). Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrous scaffolds and the effect on osteogenic differentiation of stem cells. Colloids and Surfaces B: Biointerfaces, 171, 31-39.
https://doi.org/10.1016/j.colsurfb.2018.07.004
[19] Peiravi, M., & Sherafat, Z. (2024). Morphology and mechanical properties of 3D printed PCL-PLA-ZnO nanocomposite scaffolds for bone regeneration. Journal of Ultrafine Grained and Nanostructured Materials, 57(1), 28-34.
https://doi.org/10.22059/jufgnsm.2024.01.04
[21] Brydone, A. S., Meek, D., & Maclaine, S. (2010). Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 224(12), 1329-1343.
https://doi.org/10.1243/09544119JEIM770