[1] Critchley, R., Smy, V., Corni, I., Wharton, J. A., Walsh, F. C., Wood, R. J., & Stokes, K. R. (2020). Experimental and computation assessment of thermomechanical effects during auxetic foam fabrication. Scientific Reports, 10(1), 18301.
https://doi.org/10.1038/s41598-020-75298-w
[2] Hu, J., He, Y., Lei, J., & Liu, Z. (2013). Novel mechanical behavior of periodic structure with the pattern transformation. Theoretical and Applied Mechanics Letters, 3(5), 054007.
https://doi.org/10.1063/2.1305407
[3] He, Y., Guo, S., Liu, Z., & Liew, K. M. (2015). Pattern transformation of thermo-responsive shape memory polymer periodic cellular structures. International Journal of Solids and Structures, 71, 194-205.
https://doi.org/10.1016/j.ijsolstr.2015.06.022
[4] Bertoldi, K., Reis, P. M., Willshaw, S., & Mullin, T. (2010). Negative Poisson’s ratio behavior induced by an elastic instability. Advanced Materials, 22(3), 361-366.
https://doi.org/10.1002/adma.200901956
[5] Forte, A. E., Melancon, D., Zanati, M., De Giorgi, M., & Bertoldi, K. (2023). Chiral mechanical metamaterials for tunable optical transmittance. Advanced Functional Materials, 33(20), 2214897.
https://doi.org/10.1002/adfm.202214897
[6] Duncan, O., Foster, L., Allen, T., & Alderson, A. (2023). Effect of Poisson’s ratio on the indentation of open cell foam. European Journal of Mechanics-A/Solids, 99, 104922.
[7] He, P., Wang, S., Zhang, M., Sang, L., Tong, L., & Hou, W. (2024). Compression performance of 3D-printed thermoplastic auxetic structures. Thin-Walled Structures, 197, 111558.
https://doi.org/10.1016/j.tws.2024.111558
[8] Gatt, R., Wood, M. V., Gatt, A., Zarb, F., Formosa, C., Azzopardi, K. M., Casha, A., Agius, T. P., Schembri-Wismayer, P., Attard, L., & Chockalingam, N. (2015). Negative Poisson’s ratios in tendons: An unexpected mechanical response. Acta Biomaterialia, 24, 201-208.
https://doi.org/10.1016/j.actbio.2015.06.018
[9] Eghbali, P., Younesian, D., Moayedizadeh, A., & Ranjbar, M. (2020). Study in circular auxetic structures for efficiency enhancement in piezoelectric vibration energy harvesting. Scientific Reports, 10(1), 16338.
https://doi.org/10.1038/s41598-020-73425-1
[10] Peng, C., Tran, P., & Mouritz, A. P. (2022). Compression and buckling analysis of 3D printed carbon fibre-reinforced polymer cellular composite structures. Composite Structures, 300, 116167.
https://doi.org/10.1016/j.compstruct.2022.116167
[11] Johnson, C. G., Jain, U., Hazel, A. L., Pihler-Puzović, D., & Mullin, T. (2017). On the buckling of an elastic holey column. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2207), 20170477.
https://doi.org/10.1098/rspa.2017.0477
[12] Bertoldi, K., Boyce, M. C., Deschanel, S., Prange, S., & Mullin, T. (2008). Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures. Journal of the Mechanics and Physics of Solids, 56(8), 2642-2668.
https://doi.org/10.1016/j.jmps.2008.03.006
[13] Talezadehlari, A., & Rahimi, G. H. (2017). The effect of geometrical imperfection on the axial buckling of unstiffened and stiffened composite cylinders with and without cutout. Modares Mechanical Engineering, 17(7), 245-256.
https://doi.org/20.1001.1.10275940.1396.17.7.33.5
[14] Dassault Systèmes. (2012). Abaqus/CAE user's manual (Version 6.12). Dassault Systèmes.
[16] Su, P., Yang, Y., & Song, Y. (2015). Corneal hyper-viscoelastic model: derivations, experiments, and simulations. Acta of Bioengineering and Biomechanics, 17(2), 73-84.
https://doi.org/10.5277/ABB-00142-2014-03
[18] Narooei, K., & Arman, M. (2018). Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials. Journal of the Mechanical Behavior of Biomedical Materials, 79, 104-113.
https://doi.org/10.1016/j.jmbbm.2017.12.019
[20] Diani, J., Gilormini, P., Frédy, C., & Rousseau, I. (2012). Predicting thermal shape memory of crosslinked polymer networks from linear viscoelasticity. International Journal of Solids and Structures, 49(5), 793-799.
https://doi.org/10.1016/j.ijsolstr.2011.11.019
[21] Hu, J., Zhou, Y., Liu, Z., & Ng, T. Y. (2017). Pattern switching in soft cellular structures and hydrogel-elastomer composite materials under compression. Polymers, 9(6), 229.
https://doi.org/10.3390/polym9060229
[22] Taylor, M., Francesconi, L., Baldi, A., Liang, X., & Aymerich, F. (2019). A novel auxetic structure with enhanced impact performance by means of periodic tessellation with variable Poisson’s ratio. In Dynamic Behavior of Materials, Volume 1: Proceedings of the 2018 Annual Conference on Experimental and Applied Mechanics (pp. 211-218). Springer International Publishing.
[24] Javid, F., Liu, J., Shim, J., Weaver, J. C., Shanian, A., & Bertoldi, K. (2016). Mechanics of instability-induced pattern transformations in elastomeric porous cylinders. Journal of the Mechanics and Physics of Solids, 96, 1-17.
https://doi.org/10.1016/j.jmps.2016.06.015
[25] Overvelde, J. T. B., Shan, S., & Bertoldi, K. (2012). Compaction through buckling in 2D periodic, soft and porous structures: effect of pore shape. Advanced Materials, 24(17), 2337-2342.
https://doi.org/10.1002/adma.201104395
[28] Ghorbanoghli, A., & Narooei, K. (2019). A new hyper-viscoelastic model for investigating rate dependent mechanical behavior of dual cross link self-healing hydrogel. International Journal of Mechanical Sciences, 159, 278-286.
https://doi.org/10.1016/j.ijmecsci.2019.06.019
[29] Hiemenz, P. C., Lodge, T. P. (2007). Polymer chemistry. CRC press.
[30] Sadeghi, F., Baniassadi, M., Shahidi, A., Baghani, M. (2023). TPMS metamaterial structures based on shape memory polymers: Mechanical, thermal and thermomechanical assessment. Journal of Materials Research and Technology, 23, 3726-3743.
https://doi.org/10.1016/j.jmrt.2023.02.014