Statistical Analysis of Quenching & Partitioning Effects on Mechanical Properties of 1.7102 Steel Using ANOVA Technique

Document Type : Research Paper

Authors

1 Department of Mechanical and Materials Engineering, Birjand University of Technology, Birjand, Iran

2 Department of Mechanical Engineering, Faculty of Engineering, Ardakan University, P.O. Box 184, Ardakan, Iran

3 Mechanical Engineering Department, University of Birjand, Birjand 97175-376, Iran

Abstract

Quenched and partitioned (Q&P) steels represent a new generation of advanced high-strength steels, characterized by their excellent combination of strength and ductility. The high ductility of Q&P steels is attributed to their unique micro-composite microstructure, consisting of a martensitic matrix and 10-15% residual austenite. This research aims to determine the process parameters and investigate their effect on the ultimate tensile strength, yield strength, total elongation, reduction of area, and hardness of 1.7102 silicon medium carbon steel specimens subjected to quenching and partitioning processes. A full factorial design of experiments (DOE) was obtained using Minitab software for statistical analysis of the results. First, the normality of data was validated, and the main effects and interactions were analyzed through analysis of variance (ANOVA). The findings reveal that quenching temperature, partitioning time, and their interaction had a significant effect on the response.

Keywords


[1] Abedini, A., Rastegari, H., & Emam, S. (2023). Mechanical properties and work hardening behaviour of spring steel after the quenching-partitioning process. Canadian Metallurgical Quarterly, 63(4), 1169–1182. https://doi.org/10.1080/00084433.2023.2291288 
[2] Gu, J., Li, D., Liu, S. & Liu, Z. (2024). Microstructure and properties of Mn–Si–Cr alloy steel modified by quenching and partitioning. Materials Testing, 66(3), 305-315. https://doi.org/10.1515/mt-2023-0341
[3] Yu, C. J., Seo, C. H., Im, Y. R., & Suh, D. W. (2024). Influence of silicon contents on the microstructure and tensile properties of quenching and partitioning (Q&P) processed low carbon steel. ISIJ International, 64(2), 412-420.‏ https://doi.org/10.2355/isijinternational.ISIJINT-2023-113
[4] Wang, L., & Speer, J. G. (2013). Quenching and partitioning steel heat treatment. Metallography, Microstructure, and Analysis, 2, 268-281. https://doi.org/10.1007/s13632-013-0082-8
[5] Diego-Calderón, I., Sabirov, I., Molina-Aldagueria, J., Föjer, C., & Thiessen, R. (2016). Microstructural design in quenched and partitioned (Q&P) steels to improve their fracture. Materials Science & Engineering A, 657, 136-146. https://doi.org/10.1016/j.msea.2016.01.011
[6] Yang, Y., Huang, F., Guo, Z., Rong, Y., & Chen, N. (2016). Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure. Materials Science and Engineering A, 665, 76-85. https://doi.org/10.1016/j.msea.2016.04.025
[7] Speer, J., Matlock, D. K., De Cooman, B. C., & Schroth, J. G. (2003). Carbon partitioning into austenite after martensite transformation. Acta Materialia, 51(9), 2611-2622. https://doi.org/10.1016/S1359-6454(03)00059-4
[8] Bigg, T. D., Edmonds, D. V., & Eardley, E. S. (2013). Real-time structural analysis of quenching and partitioning (Q&P) in an experimental martensitic steel. Journal of Alloys and Compounds, 577, S695-S698. https://doi.org/10.1016/j.jallcom.2013.01.205
[9] Kong, H., Chao, Q., Cai, M. H., Pavlina, E. J., Rolfe, B., Hodgson, P. D., & Beladi, H. (2018). Microstructure evolution and mechanical behavior of a CMnSiAl TRIP steel subjected to partial austenitization along with quenching and partitioning treatment. Metallurgical and Materials Transactions A, 49, 1509-1519. https://doi.org/10.1007/s11661-018-4525-3
[10] Podder, A. S., Lonardelli, I., Molinari, A., & Bhadeshia, H. K. D. H. (2011). Thermal stability of retained austenite in bainitic steel: an in situ study. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2135), 3141-3156. https://doi.org/10.1098/rspa.2011.0212
[11] Santofimia, M. J., Zhao, L., & Sietsma, J. (2009). Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization. Metallurgical and Materials Transactions A, 40, 46-57. https://doi.org/10.1007/s11661-008-9701-4
[12] Santofimia, M. J., Zhao, L., Petrov, R., & Sietsma, J. (2008). Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel. Materials Characterization, 59(12), 1758-1764. https://doi.org/10.1016/j.matchar.2008.04.004
[13] Wu, R. M., Li, W., Wang, C. L., Xiao, Y., Wang, L., & Jin, X. J. (2015). Stability of retained austenite through a combined intercritical annealing and quenching and partitioning (IAQP) treatment. Acta Metallurgica Sinica (English Letters), 28, 386-393. https://doi.org/10.1007/s40195-015-0217-9
[14] Dong, H. Y., Wu, K. M., Wang, X. L., Hou, T. P., & Yan, R. (2018). A comparative study on the three-body abrasive wear performance of Q&P processing and low-temperature bainitic transformation for a medium-carbon dual-phase steel. Wear, 402, 21-29. https://doi.org/10.1016/j.wear.2018.01.009
[15] Liu, L., He, B. B., Cheng, G. J., Yen, H. W., & Huang, M. X. (2018). Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite. Scripta Materialia, 150, 1-6. https://doi.org/10.1016/j.scriptamat.2018.02.035
[16] Li, S., Zhu, R., Karaman, I., & Arróyave, R. (2013). Development of a kinetic model for bainitic isothermal transformation in transformation-induced plasticity steels. Acta Materialia, 61(8), 2884-2894. https://doi.org/10.1016/j.actamat.2013.01.032
[17] Allain, S. Y. P., Geandier, G., Hell, J. C., Soler, M., Danoix, F., & Gouné, M. (2017). In-situ investigation of quenching and partitioning by high energy X-ray diffraction experiments. Scripta Materialia, 131, 15-18. https://doi.org/10.1016/j.scriptamat.2016.12.026
[18] Sabirov, I., Santofimia, M. J., & Petrov, R. H. (2021). Advanced high-strength steels by quenching and partitioning. Metals, 11(9), 1419. https://doi.org/10.3390/met11091419
[19] Hafeez, M. A. (2021). Microstructural and mechanical properties of one-step quenched and partitioned 65Mn steel. Arabian Journal for Science and Engineering, 46(3), 2261-2267. https://doi.org/10.1007/s13369-020-05075-4
[20] Li, Q., Zhang, Y., Li, W., Huang, X., & Huang, W. (2020). Improved mechanical properties of a quenched and partitioned medium-carbon bainitic steel by control of bainitic isothermal transformation. Journal of Materials Engineering and Performance, 29, 32-41. https://doi.org/10.1007/s11665-020-04554-x
[21] Aoued, S., Danoix, F., Allain, S. Y., Gaudez, S., Geandier, G., Hell, J. C., Soler, M., & Gouné, M. (2020). Microstructure evolution and competitive reactions during quenching and partitioning of a model Fe–C–Mn–Si alloy. Metals, 10(1), 137. https://doi.org/10.3390/met10010137
[22] Gouné, M., Danoix, F., Allain, S., & Bouaziz, O. (2013). Unambiguous carbon partitioning from martensite to austenite in Fe–C–Ni alloys during quenching and partitioning. Scripta Materialia, 68(12), 1004-1007. https://doi.org/10.1016/j.scriptamat.2013.02.058
[23] Abedini, A. A., Koopaei, H. R., & Emam, S. M. (2022). The Effect of quenching and partitioning process on the microstructure and tensile properties of a medium carbon high silicon steel. Journal of Metallurgical and Materials Engineering, 33, 59-72. https://doi.org/10.22067/jmme.2022.74973.1039
[24] Wang, X. D., Zhong, N., Rong, Y. H., Hsu, T. Y., & Wang, L. (2009). Novel ultrahigh-strength nanolath martensitic steel by quenching–partitioning–tempering process. Journal of Materials Research, 24(1), 260-267. https://doi.org/10.1557/JMR.2009.0029
[25] Jirková, H., Kučerová, L., & Mašek, B. (2012, January). Effect of quenching and partitioning temperatures in the QP process on the properties of AHSS with various amounts of manganese and silicon. In Materials Science Forum (Vol. 706, pp. 2734-2739). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/MSF.706-709.2734
[26] Zinsaz-Borujerdi, A., Zarei-Hanzaki, A., Abedi, H. R., Karam-Abian, M., Ding, H., Han, D., & Kheradmand, N. (2018). Room temperature mechanical properties and microstructure of a low alloyed TRIP-assisted steel subjected to one-step and two-step quenching and partitioning process. Materials Science and Engineering: A, 725, 341-349. https://doi.org/10.1016/j.msea.2018.04.042
[27] Nayak, S. S., Anumolu, R., Misra, R. D. K., Kim, K. H., & Lee, D. L. (2008). Microstructure–hardness relationship in quenched and partitioned medium-carbon and high-carbon steels containing silicon. Materials Science and Engineering: A, 498(1-2), 442-456. https://doi.org/10.1016/j.msea.2008.08.028
[28] Santofimia, M. J., Zhao, L., & Sietsma, J. (2011). Overview of mechanisms involved during the quenching and partitioning process in steels. Metallurgical and Materials Transactions A, 42, 3620-3626. https://doi.org/10.1007/s11661-011-0706-z