[1] Abedini, A., Rastegari, H., & Emam, S. (2023). Mechanical properties and work hardening behaviour of spring steel after the quenching-partitioning process. Canadian Metallurgical Quarterly, 63(4), 1169–1182.
https://doi.org/10.1080/00084433.2023.2291288
[2] Gu, J., Li, D., Liu, S. & Liu, Z. (2024). Microstructure and properties of Mn–Si–Cr alloy steel modified by quenching and partitioning. Materials Testing, 66(3), 305-315.
https://doi.org/10.1515/mt-2023-0341
[3] Yu, C. J., Seo, C. H., Im, Y. R., & Suh, D. W. (2024). Influence of silicon contents on the microstructure and tensile properties of quenching and partitioning (Q&P) processed low carbon steel. ISIJ International, 64(2), 412-420.
https://doi.org/10.2355/isijinternational.ISIJINT-2023-113
[5] Diego-Calderón, I., Sabirov, I., Molina-Aldagueria, J., Föjer, C., & Thiessen, R. (2016). Microstructural design in quenched and partitioned (Q&P) steels to improve their fracture. Materials Science & Engineering A, 657, 136-146.
https://doi.org/10.1016/j.msea.2016.01.011
[6] Yang, Y., Huang, F., Guo, Z., Rong, Y., & Chen, N. (2016). Effect of retained austenite on the hydrogen embrittlement of a medium carbon quenching and partitioning steel with refined microstructure. Materials Science and Engineering A, 665, 76-85.
https://doi.org/10.1016/j.msea.2016.04.025
[8] Bigg, T. D., Edmonds, D. V., & Eardley, E. S. (2013). Real-time structural analysis of quenching and partitioning (Q&P) in an experimental martensitic steel. Journal of Alloys and Compounds, 577, S695-S698.
https://doi.org/10.1016/j.jallcom.2013.01.205
[9] Kong, H., Chao, Q., Cai, M. H., Pavlina, E. J., Rolfe, B., Hodgson, P. D., & Beladi, H. (2018). Microstructure evolution and mechanical behavior of a CMnSiAl TRIP steel subjected to partial austenitization along with quenching and partitioning treatment. Metallurgical and Materials Transactions A, 49, 1509-1519.
https://doi.org/10.1007/s11661-018-4525-3
[10] Podder, A. S., Lonardelli, I., Molinari, A., & Bhadeshia, H. K. D. H. (2011). Thermal stability of retained austenite in bainitic steel: an in situ study. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2135), 3141-3156.
https://doi.org/10.1098/rspa.2011.0212
[11] Santofimia, M. J., Zhao, L., & Sietsma, J. (2009). Microstructural evolution of a low-carbon steel during application of quenching and partitioning heat treatments after partial austenitization. Metallurgical and Materials Transactions A, 40, 46-57.
https://doi.org/10.1007/s11661-008-9701-4
[12] Santofimia, M. J., Zhao, L., Petrov, R., & Sietsma, J. (2008). Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel. Materials Characterization, 59(12), 1758-1764.
https://doi.org/10.1016/j.matchar.2008.04.004
[13] Wu, R. M., Li, W., Wang, C. L., Xiao, Y., Wang, L., & Jin, X. J. (2015). Stability of retained austenite through a combined intercritical annealing and quenching and partitioning (IAQP) treatment. Acta Metallurgica Sinica (English Letters), 28, 386-393.
https://doi.org/10.1007/s40195-015-0217-9
[14] Dong, H. Y., Wu, K. M., Wang, X. L., Hou, T. P., & Yan, R. (2018). A comparative study on the three-body abrasive wear performance of Q&P processing and low-temperature bainitic transformation for a medium-carbon dual-phase steel. Wear, 402, 21-29.
https://doi.org/10.1016/j.wear.2018.01.009
[15] Liu, L., He, B. B., Cheng, G. J., Yen, H. W., & Huang, M. X. (2018). Optimum properties of quenching and partitioning steels achieved by balancing fraction and stability of retained austenite. Scripta Materialia, 150, 1-6.
https://doi.org/10.1016/j.scriptamat.2018.02.035
[16] Li, S., Zhu, R., Karaman, I., & Arróyave, R. (2013). Development of a kinetic model for bainitic isothermal transformation in transformation-induced plasticity steels. Acta Materialia, 61(8), 2884-2894.
https://doi.org/10.1016/j.actamat.2013.01.032
[17] Allain, S. Y. P., Geandier, G., Hell, J. C., Soler, M., Danoix, F., & Gouné, M. (2017). In-situ investigation of quenching and partitioning by high energy X-ray diffraction experiments. Scripta Materialia, 131, 15-18.
https://doi.org/10.1016/j.scriptamat.2016.12.026
[18] Sabirov, I., Santofimia, M. J., & Petrov, R. H. (2021). Advanced high-strength steels by quenching and partitioning. Metals, 11(9), 1419.
https://doi.org/10.3390/met11091419
[19] Hafeez, M. A. (2021). Microstructural and mechanical properties of one-step quenched and partitioned 65Mn steel. Arabian Journal for Science and Engineering, 46(3), 2261-2267.
https://doi.org/10.1007/s13369-020-05075-4
[20] Li, Q., Zhang, Y., Li, W., Huang, X., & Huang, W. (2020). Improved mechanical properties of a quenched and partitioned medium-carbon bainitic steel by control of bainitic isothermal transformation. Journal of Materials Engineering and Performance, 29, 32-41.
https://doi.org/10.1007/s11665-020-04554-x
[21] Aoued, S., Danoix, F., Allain, S. Y., Gaudez, S., Geandier, G., Hell, J. C., Soler, M., & Gouné, M. (2020). Microstructure evolution and competitive reactions during quenching and partitioning of a model Fe–C–Mn–Si alloy. Metals, 10(1), 137.
https://doi.org/10.3390/met10010137
[22] Gouné, M., Danoix, F., Allain, S., & Bouaziz, O. (2013). Unambiguous carbon partitioning from martensite to austenite in Fe–C–Ni alloys during quenching and partitioning. Scripta Materialia, 68(12), 1004-1007.
https://doi.org/10.1016/j.scriptamat.2013.02.058
[23] Abedini, A. A., Koopaei, H. R., & Emam, S. M. (2022). The Effect of quenching and partitioning process on the microstructure and tensile properties of a medium carbon high silicon steel. Journal of Metallurgical and Materials Engineering, 33, 59-72.
https://doi.org/10.22067/jmme.2022.74973.1039
[24] Wang, X. D., Zhong, N., Rong, Y. H., Hsu, T. Y., & Wang, L. (2009). Novel ultrahigh-strength nanolath martensitic steel by quenching–partitioning–tempering process. Journal of Materials Research, 24(1), 260-267.
https://doi.org/10.1557/JMR.2009.0029
[25] Jirková, H., Kučerová, L., & Mašek, B. (2012, January). Effect of quenching and partitioning temperatures in the QP process on the properties of AHSS with various amounts of manganese and silicon. In Materials Science Forum (Vol. 706, pp. 2734-2739). Trans Tech Publications Ltd.
https://doi.org/10.4028/www.scientific.net/MSF.706-709.2734
[26] Zinsaz-Borujerdi, A., Zarei-Hanzaki, A., Abedi, H. R., Karam-Abian, M., Ding, H., Han, D., & Kheradmand, N. (2018). Room temperature mechanical properties and microstructure of a low alloyed TRIP-assisted steel subjected to one-step and two-step quenching and partitioning process. Materials Science and Engineering: A, 725, 341-349.
https://doi.org/10.1016/j.msea.2018.04.042
[27] Nayak, S. S., Anumolu, R., Misra, R. D. K., Kim, K. H., & Lee, D. L. (2008). Microstructure–hardness relationship in quenched and partitioned medium-carbon and high-carbon steels containing silicon. Materials Science and Engineering: A, 498(1-2), 442-456.
https://doi.org/10.1016/j.msea.2008.08.028
[28] Santofimia, M. J., Zhao, L., & Sietsma, J. (2011). Overview of mechanisms involved during the quenching and partitioning process in steels. Metallurgical and Materials Transactions A, 42, 3620-3626.
https://doi.org/10.1007/s11661-011-0706-z