[1] Black, C. R., Goriainov, V., Gibbs, D., Kanczler, J., Tare, R. S., & Oreffo, R. O. (2015). Bone tissue engineering. Current Molecular Biology Reports, 1(3), 132-140.
https://doi.org/10.1007/s40610-015-0022-2
[4] Razavi, M., Fathi, M., Savabi, O., Beni, B. H., Vashaee, D., & Tayebi, L. (2014). Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications. Colloids and Surfaces B: Biointerfaces, 117, 432-440.
https://doi.org/10.1016/j.colsurfb.2013.12.011
[5] Sharafabadi, A. K., Abdellahi, M., Kazemi, A., Khandan, A., & Ozada, N. (2017). A novel and economical route for synthesizing akermanite (Ca2MgSi2O7) nano-bioceramic. Materials Science and Engineering: C, 71, 1072-1078.
https://doi.org/10.1016/j.msec.2016.11.021
[7] Wu, C., Chang, J., Zhai, W., Ni, S., & Wang, J. (2006). Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 78(1), 47-55.
https://doi.org/10.1002/jbm.b.30456
[8] Rafiee, N., Karbasi, S., Nourbakhsh, A. A., & Amini, K. (2022). Natural hydroxyapatite/diopside nanocomposite scaffold for bone tissue engineering applications: physical, mechanical, bioactivity and biodegradation evaluation. Materials Technology, 37(1), 36-48.
https://doi.org/10.1080/10667857.2020.1806189
[9] Nicoara, A. I., Alecu, A. E., Balaceanu, G. C., Puscasu, E. M., Vasile, B. S., & Trusca, R. (2023). Fabrication and characterization of porous diopside/akermanite ceramics with prospective tissue engineering applications. Materials, 16(16), 5548.
https://doi.org/10.3390/ma16165548
[10] Srinath, P., Abdul Azeem, P., & Venugopal Reddy, K. (2020). Review on calcium silicate‐based bioceramics in bone tissue engineering. International Journal of Applied Ceramic Technology, 17(5), 2450-2464.
https://doi.org/10.1111/ijac.13577
[11] Zamani Foroushani, R., Karamian, E., & Rafienia, M. (2022). Evolution of biological properties of bioactive diopside and wollastonite for bone tissue engineering. Journal of Advanced Materials and Processing, 10(1), 39-56.
https://doi.org/10.21203/rs.3.rs-52269/v1
[14] Ahmadipour, M., Mohammadi, H., Pang, A. L., Arjmand, M., Ayode Otitoju, T., U. Okoye, P., & Rajitha, B. (2022). A review: silicate ceramic-polymer composite scaffold for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 71(3), 180-195.
https://doi.org/10.1080/00914037.2020.1817018
[15] Gkioni, C., Leeuwenburgh, S., & Jansen, J. (2020). Biodegradable polymeric/ceramic composite scaffolds to regenerate bone tissue. In S. Dumitriu & V. Popa (Eds.), Polymeric Biomaterials (pp. 239-260). CRC Press.
https://doi.org/10.1201/b13757-9
[16] Barroso, G., Li, Q., Bordia, R. K., & Motz, G. (2019). Polymeric and ceramic silicon-based coatings–a review. Journal of Materials Chemistry A, 7(5), 1936-1963.
https://doi.org/10.1039/c8ta09054h
[17] Subhapradha, N., Abudhahir, M., Aathira, A., Srinivasan, N., & Moorthi, A. (2018). Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering. International Journal of Biological Macromolecules, 110, 65-73.
https://doi.org/10.1016/j.ijbiomac.2017.11.146
[18] Benedini, L., & Messina, P. (2024). Advances in polymer/ceramic composites for bone tissue engineering applications. In S. Kargozar & F. Baino (Eds.), Bioceramics: Status in Tissue Engineering and Regenerative Medicine (Part 1) (pp. 231-251). Bentham Science Publishers.
https://doi.org/10.2174/9789815238396124010012
[19] Peroglio, M., Gremillard, L., Chevalier, J., Chazeau, L., Gauthier, C., & Hamaide, T. (2007). Toughening of bio-ceramics scaffolds by polymer coating. Journal of the European Ceramic Society, 27(7), 2679-2685.
https://doi.org/10.1016/j.jeurceramsoc.2006.10.016
[20] Reddy, M. S. B., Ponnamma, D., Choudhary, R., & Sadasivuni, K. K. (2021). A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers, 13(7), 1105.
https://doi.org/10.3390/polym13071105
[21] Yang, Q., Zhao, J., Muhammad, A., Tian, L., Liu, Y., Chen, L., & Yang, P. (2022). Biopolymer coating for particle surface engineering and their biomedical applications. Materials Today Bio, 16, 100407.
https://doi.org/10.1016/j.mtbio.2022.100407
[22] Bikuna-Izagirre, M., Aldazabal, J., & Paredes, J. (2022). Gelatin blends enhance performance of electrospun polymeric scaffolds in comparison to coating protocols. Polymers, 14(7), 1311.
https://doi.org/10.3390/polym14071311
[23] Hayashi, S., Otsuka, N., Akiyama, K., Okada, K., & Yano, T. (1989). Preparation of diopside fine powders by spray pyrolysis and its sinterability. Journal of the Ceramic Society of Japan, 97(1127), 742-746.
https://doi.org/10.2109/jcersj.97.742
[24] Choudhary, R., Vecstaudza, J., Krishnamurithy, G., Raghavendran, H. R. B., Murali, M. R., Kamarul, T., Swamiappan, S., & Locs, J. (2016). In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method. Materials Science and Engineering: C, 68, 89-100.
https://doi.org/10.1016/j.msec.2016.04.110
[25] Sadeghzade, S., Emadi, R., Ahmadi, T., & Tavangarian, F. (2019). Synthesis, characterization and strengthening mechanism of modified and unmodified porous diopside/baghdadite scaffolds. Materials Chemistry and Physics, 228, 89-97.
https://doi.org/10.1016/j.matchemphys.2019.02.041
[26] Ramezani, S., Emadi, R., Kharaziha, M., & Tavangarian, F. (2017). Synthesis, characterization and in vitro behavior of nanostructured diopside/biphasic calcium phosphate scaffolds. Materials Chemistry and Physics, 186, 415-425.
https://doi.org/10.1016/j.matchemphys.2016.11.013
[27] Sayed, M., Mahmoud, E., Bondioli, F., & Naga, S. (2019). Developing porous diopside/hydroxyapatite bio-composite scaffolds via a combination of freeze-drying and coating process. Ceramics International, 45(7), 9025-9031.
https://doi.org/10.1016/j.ceramint.2019.01.236
[28] Teimouri, A., Roohafza, S., Azadi, M., & Chermahini, A. N. (2018). Fabrication and characterization of chitosan/gelatin/nanodiopside composite scaffolds for tissue engineering application. Polymer Bulletin, 75(4), 1487-1504.
https://doi.org/10.1007/s00289-017-2096-x
[29] Wahaia, F., Kasalynas, I., Karaliunas, M., Urbanowicz, A., Seifert, B., Valusis, G., & Ferraro, V. (2024). Effect of bone age and anatomy on the variability of the bovine bone by-product by Terahertz time-domain spectroscopy and energy-dispersive X-ray microanalysis. Food Bioscience, 59, 103978.
https://doi.org/10.1016/j.fbio.2024.103978
[30] Hosseini, Y., Emadi, R., & Kharaziha, M. (2017). Surface modification of PCL-diopside fibrous membrane via gelatin immobilization for bone tissue engineering. Materials Chemistry and Physics, 194, 356-366.
https://doi.org/10.1016/j.matchemphys.2017.03.051
[31] Pang, S., Wu, D., Yang, H., Kamutzki, F., Kurreck, J., Gurlo, A., & Hanaor, D. A. (2023). Enhanced mechanical performance and bioactivity in strontium/copper co-substituted diopside scaffolds. Biomaterials Advances, 145, 213230.
https://doi.org/10.1016/j.bioadv.2022.213230
[32] Shemshad, S., Kamali, S., Khavandi, A., & Azari, S. (2019). Synthesis, characterization and in-vitro behavior of natural chitosan-hydroxyapatite-diopside nanocomposite scaffold for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(9), 516-526.
https://doi.org/10.1080/00914037.2018.1466138
[33] Sobhani, A., & Salimi, E. (2023). Low temperature preparation of diopside nanoparticles: in-vitro bioactivity and drug loading evaluation. Scientific Reports, 13(1), 16330.
https://doi.org/10.1038/s41598-023-43671-0
[34] Goudouri, O., Theodosoglou, E., Kontonasaki, E., Will, J., Chrissafis, K., Koidis, P., Paraskevopoulos, K., & Boccaccini, A. (2014). Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering. Materials Research Bulletin, 49, 399-404.
https://doi.org/10.1016/j.materresbull.2013.09.027
[35] Kordjamshidi, A., Saber-Samandari, S., Nejad, M. G., & Khandan, A. (2019). Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: Fabrication, characterization and simulation. Ceramics International, 45(11), 14126-14135.
https://doi.org/10.1016/j.ceramint.2019.04.113
[36] Moatary, A., Teimouri, A., Bagherzadeh, M., Chermahini, A. N., & Razavizadeh, R. (2017). Design and fabrication of novel chitin hydrogel/chitosan/nano diopside composite scaffolds for tissue engineering. Ceramics International, 43(2), 1657-1668.
https://doi.org/10.1016/j.ceramint.2016.06.068
[37] Kumar, J. P., Lakshmi, L., Jyothsna, V., Balaji, D., Saravanan, S., Moorthi, A., & Selvamurugan, N. (2014). Synthesis and characterization of diopside particles and their suitability along with chitosan matrix for bone tissue engineering in vitro and in vivo. Journal of Biomedical Nanotechnology, 10(6), 970-981.
https://doi.org/10.1166/jbn.2014.1808
[38] Zhou, X., OuYang, J., Li, L., Liu, Q., Liu, C., Tang, M., Deng, Y., & Lei, T. (2019). In vitro and in vivo anti-corrosion properties and bio-compatibility of 5β-TCP/Mg-3Zn scaffold coated with dopamine-gelatin composite. Surface and Coatings Technology, 374, 152-163.
https://doi.org/10.1016/j.surfcoat.2019.05.046
[39] Saravanan, S., Chawla, A., Vairamani, M., Sastry, T., Subramanian, K., & Selvamurugan, N. (2017). Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 104, 1975-1985.
https://doi.org/10.1016/j.ijbiomac.2017.01.034
[40] Ghasemi, M., Liang, S., Luu, Q. M., & Kempson, I. (2023). The MTT assay: a method for error minimization and interpretation in measuring cytotoxicity and estimating cell viability. In O. Friedrich & D. F. Gilbert (Eds), Cell viability assays: Methods and protocols (pp. 15-33). Springer.
https://doi.org/10.1007/978-1-0716-3052-5_2
[41] Purohit, S. D., Bhaskar, R., Singh, H., Yadav, I., Gupta, M. K., & Mishra, N. C. (2019). Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. International Journal of Biological Macromolecules, 133, 592-602.
https://doi.org/10.1016/j.ijbiomac.2019.04.113
[42] Ghorbani, F., Sahranavard, M., & Zamanian, A. (2020). Immobilization of gelatin on the oxygen plasma-modified surface of polycaprolactone scaffolds with tunable pore structure for skin tissue engineering. Journal of Polymer Research, 27(9), 1-12.
https://doi.org/10.1007/s10965-020-02263-6
[43] Miao, X., Tan, D. M., Li, J., Xiao, Y., & Crawford, R. (2008). Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid). Acta Biomaterialia, 4(3), 638-645.
https://doi.org/10.1016/j.actbio.2007.10.006
[45] Gibson, L. J., Ashby, M. F. (1999). Cancellous bone. In Cellular solids: structure and properties (2nd ed., pp. 429-452). Cambridge University Press.