Fabrication and Evaluation of Diopside/Gelatin Composite Scaffolds for Bone Tissue Engineering: A Comprehensive Study on Porosity, Bioactivity and Cell Interactions

Document Type : Research Paper

Authors

1 Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2 Department of Stem Cells and Regenerative Medicine, Institute for Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran

Abstract

This research investigates the development and characterization of a novel diopside/gelatin composite scaffold tailored to enhance bone tissue regeneration. The scaffold was fabricated using a space holder method followed by a gelatin coating technique. Energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the successful application of the gelatin coating on the diopside scaffold. Scanning electron microscopy (SEM) revealed a highly porous, interconnected architecture, which provides an optimal environment for cell infiltration, vascularization, and nutrient diffusion, thereby promoting bone ingrowth. Mechanical testing demonstrated that the composite scaffolds exhibit sufficient compressive strength and stiffness to withstand physiological loads, supporting new bone tissue formation. Biological evaluation revealed excellent biocompatibility, with the scaffolds supporting robust cell attachment and proliferation. Furthermore, the observed elevation in alkaline phosphatase (ALP) activity, a critical marker of osteogenic differentiation, highlights the scaffolds' osteoconductive potential and their ability to facilitate bone formation. The synergistic combination of diopside, a bioactive ceramic renowned for its biocompatibility and osteoconductive properties, and gelatin, a natural biopolymer providing a cell-friendly environment and enhancing cell adhesion, has resulted in a promising composite scaffold significantly improved for bone tissue engineering. Notably, the application of a gelatin coating on the diopside scaffold significantly improved cell interaction and attachment, improving the overall bioactivity of the construct. These findings underscore the potential of the diopside/gelatin composite scaffold for bone regeneration applications. Nevertheless, further in vivo investigation and clinical studies are necessary to fully validate the scaffold's efficacy and elucidate its potential for clinical studies. 

Keywords


[1] Black, C. R., Goriainov, V., Gibbs, D., Kanczler, J., Tare, R. S., & Oreffo, R. O. (2015). Bone tissue engineering. Current Molecular Biology Reports, 1(3), 132-140. https://doi.org/10.1007/s40610-015-0022-2 
[2] Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone tissue engineering: recent advances and challenges. Critical Reviews™ in Biomedical Engineering, 40(5). https://doi.org/10.1615/critrevbiomedeng.v40.i5.10 
[3] Lee, S. S., Du, X., Kim, I., & Ferguson, S. J. (2022). Scaffolds for bone-tissue engineering. Matter, 5(9), 2722-2759. https://doi.org/10.1016/j.matt.2022.06.003
[4] Razavi, M., Fathi, M., Savabi, O., Beni, B. H., Vashaee, D., & Tayebi, L. (2014). Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications. Colloids and Surfaces B: Biointerfaces, 117, 432-440. https://doi.org/10.1016/j.colsurfb.2013.12.011
[5] Sharafabadi, A. K., Abdellahi, M., Kazemi, A., Khandan, A., & Ozada, N. (2017). A novel and economical route for synthesizing akermanite (Ca2MgSi2O7) nano-bioceramic. Materials Science and Engineering: C, 71, 1072-1078. https://doi.org/10.1016/j.msec.2016.11.021
[6] Kanwar, S., & Vijayavenkataraman, S. (2021). Design of 3D printed scaffolds for bone tissue engineering: A review. Bioprinting, 24, e00167. https://doi.org/10.1016/j.bprint.2021.e00167
[7] Wu, C., Chang, J., Zhai, W., Ni, S., & Wang, J. (2006). Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, and in vitro studies. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 78(1), 47-55. https://doi.org/10.1002/jbm.b.30456
[8] Rafiee, N., Karbasi, S., Nourbakhsh, A. A., & Amini, K. (2022). Natural hydroxyapatite/diopside nanocomposite scaffold for bone tissue engineering applications: physical, mechanical, bioactivity and biodegradation evaluation. Materials Technology, 37(1), 36-48. https://doi.org/10.1080/10667857.2020.1806189
[9] Nicoara, A. I., Alecu, A. E., Balaceanu, G. C., Puscasu, E. M., Vasile, B. S., & Trusca, R. (2023). Fabrication and characterization of porous diopside/akermanite ceramics with prospective tissue engineering applications. Materials, 16(16), 5548. https://doi.org/10.3390/ma16165548
[10] Srinath, P., Abdul Azeem, P., & Venugopal Reddy, K. (2020). Review on calcium silicate‐based bioceramics in bone tissue engineering. International Journal of Applied Ceramic Technology, 17(5), 2450-2464. https://doi.org/10.1111/ijac.13577
[11] Zamani Foroushani, R., Karamian, E., & Rafienia, M. (2022). Evolution of biological properties of bioactive diopside and wollastonite for bone tissue engineering. Journal of Advanced Materials and Processing, 10(1), 39-56. https://doi.org/10.21203/rs.3.rs-52269/v1
[12] Joseph, S., & Swamiappan, S. (2024). Preparation and characterization of diopside-wollastonite composite for orthopedic application. Silicon, 16(3), 1161-1171. https://doi.org/10.1007/s12633-023-02737-4
[13] Healy, K., & Guldberg, R. (2007). Bone tissue engineering. Journal of Musculoskeletal and Neuronal Interactions, 7(4), 328. https://doi.org/10.1089/ten.2006.0041
[14] Ahmadipour, M., Mohammadi, H., Pang, A. L., Arjmand, M., Ayode Otitoju, T., U. Okoye, P., & Rajitha, B. (2022). A review: silicate ceramic-polymer composite scaffold for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 71(3), 180-195. https://doi.org/10.1080/00914037.2020.1817018
[15] Gkioni, C., Leeuwenburgh, S., & Jansen, J. (2020). Biodegradable polymeric/ceramic composite scaffolds to regenerate bone tissue. In S. Dumitriu & V. Popa (Eds.), Polymeric Biomaterials (pp. 239-260). CRC Press. https://doi.org/10.1201/b13757-9
[16] Barroso, G., Li, Q., Bordia, R. K., & Motz, G. (2019). Polymeric and ceramic silicon-based coatings–a review. Journal of Materials Chemistry A, 7(5), 1936-1963. https://doi.org/10.1039/c8ta09054h
[17] Subhapradha, N., Abudhahir, M., Aathira, A., Srinivasan, N., & Moorthi, A. (2018). Polymer coated mesoporous ceramic for drug delivery in bone tissue engineering. International Journal of Biological Macromolecules, 110, 65-73. https://doi.org/10.1016/j.ijbiomac.2017.11.146
[18] Benedini, L., & Messina, P. (2024). Advances in polymer/ceramic composites for bone tissue engineering applications. In S. Kargozar & F. Baino (Eds.), Bioceramics: Status in Tissue Engineering and Regenerative Medicine (Part 1) (pp. 231-251). Bentham Science Publishers. https://doi.org/10.2174/9789815238396124010012
[19] Peroglio, M., Gremillard, L., Chevalier, J., Chazeau, L., Gauthier, C., & Hamaide, T. (2007). Toughening of bio-ceramics scaffolds by polymer coating. Journal of the European Ceramic Society, 27(7), 2679-2685. https://doi.org/10.1016/j.jeurceramsoc.2006.10.016
[20] Reddy, M. S. B., Ponnamma, D., Choudhary, R., & Sadasivuni, K. K. (2021). A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers, 13(7), 1105. https://doi.org/10.3390/polym13071105
[21] Yang, Q., Zhao, J., Muhammad, A., Tian, L., Liu, Y., Chen, L., & Yang, P. (2022). Biopolymer coating for particle surface engineering and their biomedical applications. Materials Today Bio, 16, 100407. https://doi.org/10.1016/j.mtbio.2022.100407
[22] Bikuna-Izagirre, M., Aldazabal, J., & Paredes, J. (2022). Gelatin blends enhance performance of electrospun polymeric scaffolds in comparison to coating protocols. Polymers, 14(7), 1311. https://doi.org/10.3390/polym14071311
[23] Hayashi, S., Otsuka, N., Akiyama, K., Okada, K., & Yano, T. (1989). Preparation of diopside fine powders by spray pyrolysis and its sinterability. Journal of the Ceramic Society of Japan, 97(1127), 742-746. https://doi.org/10.2109/jcersj.97.742
[24] Choudhary, R., Vecstaudza, J., Krishnamurithy, G., Raghavendran, H. R. B., Murali, M. R., Kamarul, T., Swamiappan, S., & Locs, J. (2016). In-vitro bioactivity, biocompatibility and dissolution studies of diopside prepared from biowaste by using sol–gel combustion method. Materials Science and Engineering: C, 68, 89-100. https://doi.org/10.1016/j.msec.2016.04.110
[25] Sadeghzade, S., Emadi, R., Ahmadi, T., & Tavangarian, F. (2019). Synthesis, characterization and strengthening mechanism of modified and unmodified porous diopside/baghdadite scaffolds. Materials Chemistry and Physics, 228, 89-97. https://doi.org/10.1016/j.matchemphys.2019.02.041
[26] Ramezani, S., Emadi, R., Kharaziha, M., & Tavangarian, F. (2017). Synthesis, characterization and in vitro behavior of nanostructured diopside/biphasic calcium phosphate scaffolds. Materials Chemistry and Physics, 186, 415-425. https://doi.org/10.1016/j.matchemphys.2016.11.013
[27] Sayed, M., Mahmoud, E., Bondioli, F., & Naga, S. (2019). Developing porous diopside/hydroxyapatite bio-composite scaffolds via a combination of freeze-drying and coating process. Ceramics International, 45(7), 9025-9031. https://doi.org/10.1016/j.ceramint.2019.01.236
[28] Teimouri, A., Roohafza, S., Azadi, M., & Chermahini, A. N. (2018). Fabrication and characterization of chitosan/gelatin/nanodiopside composite scaffolds for tissue engineering application. Polymer Bulletin, 75(4), 1487-1504. https://doi.org/10.1007/s00289-017-2096-x
[29] Wahaia, F., Kasalynas, I., Karaliunas, M., Urbanowicz, A., Seifert, B., Valusis, G., & Ferraro, V. (2024). Effect of bone age and anatomy on the variability of the bovine bone by-product by Terahertz time-domain spectroscopy and energy-dispersive X-ray microanalysis. Food Bioscience, 59, 103978. https://doi.org/10.1016/j.fbio.2024.103978
[30] Hosseini, Y., Emadi, R., & Kharaziha, M. (2017). Surface modification of PCL-diopside fibrous membrane via gelatin immobilization for bone tissue engineering. Materials Chemistry and Physics, 194, 356-366. https://doi.org/10.1016/j.matchemphys.2017.03.051
[31] Pang, S., Wu, D., Yang, H., Kamutzki, F., Kurreck, J., Gurlo, A., & Hanaor, D. A. (2023). Enhanced mechanical performance and bioactivity in strontium/copper co-substituted diopside scaffolds. Biomaterials Advances, 145, 213230. https://doi.org/10.1016/j.bioadv.2022.213230
[32] Shemshad, S., Kamali, S., Khavandi, A., & Azari, S. (2019). Synthesis, characterization and in-vitro behavior of natural chitosan-hydroxyapatite-diopside nanocomposite scaffold for bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(9), 516-526. https://doi.org/10.1080/00914037.2018.1466138
[33] Sobhani, A., & Salimi, E. (2023). Low temperature preparation of diopside nanoparticles: in-vitro bioactivity and drug loading evaluation. Scientific Reports, 13(1), 16330. https://doi.org/10.1038/s41598-023-43671-0
[34] Goudouri, O., Theodosoglou, E., Kontonasaki, E., Will, J., Chrissafis, K., Koidis, P., Paraskevopoulos, K., & Boccaccini, A. (2014). Development of highly porous scaffolds based on bioactive silicates for dental tissue engineering. Materials Research Bulletin, 49, 399-404. https://doi.org/10.1016/j.materresbull.2013.09.027
[35] Kordjamshidi, A., Saber-Samandari, S., Nejad, M. G., & Khandan, A. (2019). Preparation of novel porous calcium silicate scaffold loaded by celecoxib drug using freeze drying technique: Fabrication, characterization and simulation. Ceramics International, 45(11), 14126-14135. https://doi.org/10.1016/j.ceramint.2019.04.113
[36] Moatary, A., Teimouri, A., Bagherzadeh, M., Chermahini, A. N., & Razavizadeh, R. (2017). Design and fabrication of novel chitin hydrogel/chitosan/nano diopside composite scaffolds for tissue engineering. Ceramics International, 43(2), 1657-1668. https://doi.org/10.1016/j.ceramint.2016.06.068
[37] Kumar, J. P., Lakshmi, L., Jyothsna, V., Balaji, D., Saravanan, S., Moorthi, A., & Selvamurugan, N. (2014). Synthesis and characterization of diopside particles and their suitability along with chitosan matrix for bone tissue engineering in vitro and in vivo. Journal of Biomedical Nanotechnology, 10(6), 970-981. https://doi.org/10.1166/jbn.2014.1808
[38] Zhou, X., OuYang, J., Li, L., Liu, Q., Liu, C., Tang, M., Deng, Y., & Lei, T. (2019). In vitro and in vivo anti-corrosion properties and bio-compatibility of 5β-TCP/Mg-3Zn scaffold coated with dopamine-gelatin composite. Surface and Coatings Technology, 374, 152-163. https://doi.org/10.1016/j.surfcoat.2019.05.046
[39] Saravanan, S., Chawla, A., Vairamani, M., Sastry, T., Subramanian, K., & Selvamurugan, N. (2017). Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 104, 1975-1985. https://doi.org/10.1016/j.ijbiomac.2017.01.034
[40] Ghasemi, M., Liang, S., Luu, Q. M., & Kempson, I. (2023). The MTT assay: a method for error minimization and interpretation in measuring cytotoxicity and estimating cell viability. In O. Friedrich & D. F. Gilbert (Eds), Cell viability assays: Methods and protocols (pp. 15-33). Springer. https://doi.org/10.1007/978-1-0716-3052-5_2
[41] Purohit, S. D., Bhaskar, R., Singh, H., Yadav, I., Gupta, M. K., & Mishra, N. C. (2019). Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. International Journal of Biological Macromolecules, 133, 592-602. https://doi.org/10.1016/j.ijbiomac.2019.04.113
[42] Ghorbani, F., Sahranavard, M., & Zamanian, A. (2020). Immobilization of gelatin on the oxygen plasma-modified surface of polycaprolactone scaffolds with tunable pore structure for skin tissue engineering. Journal of Polymer Research, 27(9), 1-12. https://doi.org/10.1007/s10965-020-02263-6
[43] Miao, X., Tan, D. M., Li, J., Xiao, Y., & Crawford, R. (2008). Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid). Acta Biomaterialia, 4(3), 638-645. https://doi.org/10.1016/j.actbio.2007.10.006
[44] Yoshikawa, H., Myiui, A., (2005). Bone tissue engineering with porous hydroxyapatite ceramics, Journal of Artificial Organs, 8, 131-136. https://doi.org/10.1007/s10047-005-0292-1
[45] Gibson, L. J., Ashby, M. F. (1999). Cancellous bone. In Cellular solids: structure and properties (2nd ed., pp. 429-452). Cambridge University Press.