[1] Singh, M., Zappa, D., & Comini, E. (2021). Solid oxide fuel cell: Decade of progress, future perspectives and challenges. International Journal of Hydrogen Energy, 46(54), 27643-27674.
https://doi.org/10.1016/j.ijhydene.2021.06.020
[3] Gadsbøll, R. Ø., Thomsen, J., Bang-Møller, C., Ahrenfeldt, J., & Henriksen, U. B. (2017). Solid oxide fuel cells powered by biomass gasification for high efficiency power generation. Energy, 131, 198-206.
https://doi.org/10.1016/j.energy.2017.05.044
[5] Tsipis, E. V., & Kharton, V. V. (2011). Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review. III. Recent trends and selected methodological aspects. Journal of Solid State Electrochemistry, 15, 1007-1040.
https://doi.org/10.1007/s10008-011-1341-8
[7] Bae, Y., Lee, S., & Hong, J. (2019). The effect of anode microstructure and fuel utilization on current relaxation and concentration polarization of solid oxide fuel cell under electrical load change. Energy conversion and management, 201, 112152.
https://doi.org/10.1016/j.enconman.2019.112152
[8] Jeon, D. H., Nam, J. H., and Kim, C. J. (2006). Microstructural optimization of anode-supported solid oxide fuel cells by a comprehensive microscale model. Journal of the Electrochemical Society, 153(2), A406.
https://doi.org/10.1149/1.2139954
[9] Bunch, J., Chen, Y., Chen, F., & May, M. (2012). Freeze-tape casting for the design of anode-delivery layer in solid oxide fuel cells. In P. Singh & N. P. Bansal (Ed.), Advances in solid oxide fuel cells VIII (pp. 13-21). John Wiley & Sons.
[10] Chen, Y., Liu, Q., Yang, Z., Chen, F., & Han, M. (2012). High performance low temperature solid oxide fuel cells with novel electrode architecture, RSC Advances, 2(32), 12118-12121.
https://doi.org/10.1039/C2RA21921B
[11] Souza, D. F., Nunes, E. H., & Vasconcelos, W. L. (2018). Preparation of Ba0.5Sr0.5Co0.8Fe0.2O3–𝛿 asymmetric structures by freeze-casting and dip-coating. Ceramics International, 44(1), 1002–1006.
https://doi.org/10.1016/j.ceramint.2017.10.035
[12] Sofie, S. W. (2007). Fabrication of functionally graded and aligned porosity in thin ceramic substrates with the novel freeze-tape-casting process. Journal of the American Ceramic Society, 90(7), 2024–2031.
https://doi.org/10.1111/j.1551-2916.2007.01720.x
[14] Gannon, P., Sofie, S., Deibert, M., Smith, R., & Gorokhovsky, V. (2008). Thin film YSZ coatings on functionally graded freeze cast NiO/YSZ SOFC anode supports, Journal of Applied Electrochemistry, 39, 497–502.
https://doi.org/10.1007/s10800-008-9682-4
[15] Chen, Y., Bunch, J., Li, T., Mao, Z., & Chen, F. (2012). Novel functionally graded acicular electrode for solid oxide cells fabricated by the freeze-tape-casting process, Journal of Power Sources, 213, 93–99.
https://doi.org/10.1016/j.jpowsour.2012.03.109
[16] Karimi, A., & Paydar, M. H. (2024). Investigation on the mechanical behavior and fracture mode of ice-templated NiO-ysz anode electrode for solid oxide fuel cells application. Journal of Materials Engineering and Performance, 33(13), 6499–6506.
https://doi.org/10.1007/s11665-023-08419-x
[17] Talebi, T., Haji, M., & Raissi, B. (2010). Effect of sintering temperature on the microstructure, roughness and electrochemical impedance of electrophoretically deposited YSZ electrolyte for SOFCs. International Journal of Hydrogen Energy, 35(17), 9420-9426.
https://doi.org/10.1016/j.ijhydene.2010.05.079
[18] Nakajima, H., Kitahara, T., & Konomi, T. (2010). Electrochemical impedance spectroscopy analysis of an anode-supported microtubular solid oxide fuel cell. Journal of the Electrochemical Society, 157(11), B1686.
https://doi.org/10.1149/1.3486805
[19] Wang, B., Bi, L., & Zhao, X. (2018). Fabrication of one-step co-fired proton-conducting solid oxide fuel cells with the assistance of microwave sintering. Journal of the European Ceramic Society, 38(16), 5620-5624.
https://doi.org/10.1016/j.jeurceramsoc.2018.08.020
[20] Liu, M., Dong, D., Peng, R., Gao, J., Diwu, J., Liu, X., & Meng, G. (2008). YSZ-based SOFC with modified electrode/electrolyte interfaces for operating at temperature lower than 650 C. Journal of Power Sources, 180(1), 215-220.
https://doi.org/10.1016/j.jpowsour.2008.01.066