[1] Crook, P. (1990). Cobalt and cobalt alloys, ASM Handbook, properties selection of nonferrous alloy and special-purpose material. ASM International, USA.
[2] Nemati, R., Taghiabadi, R., Saghafi Yazdi, M., & Amini, S. (2023). Effect of severe surface plastic deformation on tribological properties of CoCrWNi super alloys. Iranian Journal of Materials Forming, 10(2), 22-34.
https://doi.org/10.22099/IJMF.2023.47206.1256
[3] Sharath Kumar, J., Kumar, R., & Verma, R. (2024). Surface modification aspects for improving biomedical properties in implants: A review. Acta Metallurgica Sinica (English Letters), 37(2), 213-241.
https://doi.org/10.1007/s40195-023-01631-7
[4] Diaz-Rodriguez, S., Chevallier, P., Paternoster, C., Montaño-Machado, V., Noël, C., Houssiau, L., & Mantovani, D. (2019). Surface modification and direct plasma amination of L605 CoCr alloys: on the optimization of the oxide layer for application in cardiovascular implants. RSC Advances, 9(4), 2292-2301.
https://doi.org/10.1039/C8RA08541B
[5] Nemati, R., Taghiabadi, R., Yazdi, M. S., & Amini, S. (2025). Ultrasonic impact treatment of CoCrWNi superalloys for surface properties improvement. Materials Testing, (2), 372-385.
https://doi.org/10.1515/mt-2024-0134
[6] Schulze V., (2006). Modern mechanical surface treatment: states, stability, effects. John Wiley & Sons.
[7] López de Lacalle, L. N., Lamikiz, A., Sánchez, J. A., & Arana, J. L. (2007). The effect of ball burnishing on heat-treated steel and Inconel 718 milled surfaces. The International Journal of Advanced Manufacturing Technology, 32, 958-968.
https://doi.org/10.1007/s00170-005-0402-5
[8] Acharya, S., Suwas, S., & Chatterjee, K. (2021). Review of recent developments in surface nanocrystallization of metallic biomaterials. Nanoscale, 13(4), 2286-2301.
https://doi.org/10.1039/D0NR07566C
[9] Abdollahi, A., Honarpisheh, M., & Amini, S. (2024). Experimental study of the effects of the ultrasonic peening treatment on surface hardness and hardness depth of wire EDMed workpieces. Iranian Journal of Materials Forming, 11(1), 44-61.
https://doi.org/10.22099/IJMF.2024.49938.1290
[10] Omidi Hashjin, A., Vahdati, M., & Abedini, R. (2024). Investigating the effect of ultrasonic shot peening parameters on metallurgical, mechanical, and corrosion properties of industrial parts: A literature review. Iranian Journal of Materials Forming. 11(2) 75-95.
https://doi.org/10.22099/IJMF.2024.50081.1294
[11] Sebdani, R. M., Bilan, H. K., Gale, J. D., Wanni, J., Madireddy, G., Sealy, M. P., & Achuthan, A. (2024). Ultrasonic impact treatment (UIT) combined with powder bed fusion (PBF) process for precipitation hardened martensitic steels. Additive Manufacturing, 84, 104078.
https://doi.org/10.1016/j.addma.2024.104078
[12] Ansarian, I., Taghiabadi, R., Amini, S., Mosallanejad, M. H., Iuliano, L., & Saboori, A. (2024). Improvement of surface mechanical and tribological characteristics of L-PBF processed commercially pure titanium through ultrasonic impact treatment. Acta Metallurgica Sinica (English Letters), 1-13.
https://doi.org/10.1007/s40195-024-01696-y
[13] Karimi, A., & Amini, S. (2016). Steel 7225 surface ultrafine structure and improvement of its mechanical properties using surface nanocrystallization technology by ultrasonic impact. The International Journal of Advanced Manufacturing Technology, 83, 1127-1134.
https://doi.org/10.1007/s00170-015-7619-8
[14] Luna-Manuel, J. C., Lagar-Quinto, S., Ramirez-Ledesma, A. L., & Juarez-Islas, J. A. (2021). Thermomechanical and annealing processing effect on a rapid solidified Co–20 wt.% Cr alloy. Journal of Physics: Conference Series (Vol. 1723, No. 1, p. 012002). IOP Publishing.
https://doi.org/10.1088/1742-6596/1723/1/012002
[15] Lesyk, D. A., Martinez, S., Mordyuk, B. N., Dzhemelinskyi, V. V., Lamikiz, А., & Prokopenko, G. I. (2020). Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surface and Coatings Technology, 381, 125136.
https://doi.org/10.1016/j.surfcoat.2019.125136
[16] Panin, A. V., Kazachenok, M. S., Kozelskaya, A. I., Balokhonov, R. R., Romanova, V. A., Perevalova, O. B., & Pochivalov, Y. I. (2017). The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension. Materials & Design, 117, 371-381.
https://doi.org/10.1016/j.matdes.2017.01.006
[17] Wang, Z., Liu, Z., Gao, C., Wong, K., Ye, S., & Xiao, Z. (2020). Modified wear behavior of selective laser melted Ti6Al4V alloy by direct current assisted ultrasonic surface rolling process. Surface and Coatings Technology, 381, 125122.
https://doi.org/10.1016/j.surfcoat.2019.125122
[18] Amanov, A., Lee, S. W., & Pyun, Y. S. (2017). Low friction and high strength of 316L stainless steel tubing for biomedical applications. Materials Science and Engineering: C, 71, 176-185.
https://doi.org/10.1016/j.msec.2016.10.005
[19] Amanov, A. (2021). Effect of post-additive manufacturing surface modification temperature on the tribological and tribocorrosion properties of Co-Cr-Mo alloy for biomedical applications. Surface and Coatings Technology, 421, 127378.
https://doi.org/10.1016/j.surfcoat.2021.127378
[20] Abbasi, A., Amini, S., & Sheikhzadeh, G. A. (2018). Effect of ultrasonic peening technology on the thermal fatigue of rolling mill rolls. The International Journal of Advanced Manufacturing Technology, 94, 2499-2513.
https://doi.org/10.1007/s00170-017-0840-x
[21] Wang, R., Chen, D., Qin, G., & Zhang, E. (2020) Novel CoCrWNi alloys with Cu addition: Microstructure, mechanical properties, corrosion properties and biocompatibility. Journal of Alloys and Compounds, 824(25), 153924.
https://doi.org/10.1016/j.jallcom.2020.153924
[22] Yamanaka, K., Mori, M., & Chiba, A. (2012). Origin of significant grain refinement in Co-Cr-Mo alloys without severe plastic deformation. Metallurgical and Materials Transactions A, 43, 4875-4887.
https://doi.org/10.1007/s11661-012-1303-5
[23] Luo, J., Wu, S., Lu, Y., Guo, S., Yang, Y., Zhao, C., & Lin, J. (2018). The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting. Journal of Materials Science: Materials in Medicine, 29, 1-16.
https://doi.org/10.1007/s10856-018-6043-7
[24] Knezevic, M., Carpenter, J. S., Lovato, M. L., & McCabe, R. J. (2014). Deformation behavior of the cobalt-based superalloy Haynes 25: Experimental characterization and crystal plasticity modeling, Acta Materialia, 63, 162-168.
https://doi.org/10.1016/j.actamat.2013.10.021
[25] Tawancy, H. M., Ishwar, V. R., & Lewis, B. E. (1986). On the fcc→ hcp transformation in a cobalt-base superalloy (Haynes alloy No. 25). Journal of Materials Science Letters, 5(3), 337-341.
https://doi.org/10.1007/BF01748098
[27] Akbari, F., Golkaram, M., Beyrami, S., Shirazi, G., Mantashloo, K., Taghiabadi, R., & Ansarian, I. (2024). Effect of solidification cooling rate on microstructure and tribology characteristics of Zn-4Si alloy. International Journal of Minerals, Metallurgy and Materials, 31(2), 362-373.
https://doi.org/10.1007/s12613-023-2764-9
[28] Lu, Z. C., Zeng, M. Q., Gao, Y., & Zhu, M. (2013). Minimizing tribolayer damage by strength–ductility matching in dual-scale structured Al–Sn alloys: a mechanism for improving wear performance. Wear, 304(1-2), 162-172.
https://doi.org/10.1016/j.wear.2013.05.001
[29] Tran, B. H., Tieu, A. K., Wan, S., Zhu, H., Mitchell, D. R., & Nancarrow, M. J. (2017). Multifunctional bi-layered tribofilm generated on steel contact interfaces under high-temperature melt lubrication. The Journal of Physical Chemistry C, 121(45), 25092-25103.
https://doi.org/10.1021/acs.jpcc.7b06874
[30] Nouri, Z., & Taghiabadi, R. (2021). Tribological properties improvement of conventionally-cast Al-8.5Fe-1.3V-1.7Si alloy by multi-pass friction stir processing. Transactions of Nonferrous Metals Society of China, 31(5), 1262-1275.
https://doi.org/10.1016/S1003-6326(21)65576-0
[31] Ashoori, M., Jafarzadegan, M., Taghiabadi, R., Saghafi Yazdi, M., & Ansarian, I. (2023). Enhancing the tribological properties of pure Ti by pinless friction surface stirring. Materials Science and Technology, 39(18), 3308-3320.
https://doi.org/10.1080/02670836.2023.2249749
[32] Moharrami, A., Razaghian, A., Paidar, M., Šlapáková, M., Ojo, O. O., & Taghiabadi, R. (2020). Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing. Materials Chemistry and Physics, 250, 123066.
https://doi.org/10.1016/j.matchemphys.2020.123066
[33] Hutchings I., & Shipway P. (2017). Tribology: friction and wear of engineering materials. Butterworth-Heinemann.
[34] Ataee, A., Li, Y., & Wen, C. (2019). A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds. Acta Biomaterialia, 97, 587-596.
https://doi.org/10.1016/j.actbio.2019.08.008
[35] Attar, H., Ehtemam-Haghighi, S., Kent, D., Okulov, I. V., Wendrock, H., Bӧnisch, M., & Dargusch, M. S. (2017). Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Materials Science and Engineering: A, 688, 20-26.
https://doi.org/10.1016/j.msea.2017.01.096
[36] Shahriyari, F., Taghiabadi, R., Razaghian, A., & Mahmoudi, M. (2018). Effect of friction hardening on the surface mechanical properties and tribological behavior of biocompatible Ti-6Al-4V alloy. Journal of Manufacturing Processes, 31, 776-786.
https://doi.org/10.1016/j.jmapro.2017.12.016
[37] Sarmadi, H., Kokabi, A. H., & Reihani, S. S. (2013). Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP). Wear, 304(1-2), 1-12.
https://doi.org/10.1016/j.wear.2013.04.023
[38] Samuel, C., Arivarasu, M., & Prabhu, T. R. (2020). High temperature dry sliding wear behaviour of laser powder bed fused Inconel 718. Additive Manufacturing, 34, 101279.
https://doi.org/10.1016/j.addma.2020.101279