Tribology Characteristics of Ultrasonic Impact Treated Co-Based L-605 Superalloy

Document Type : Research Paper

Authors

1 Department of Metallurgy and Materials Science, Imam Khomeini International University, Qazvin, Iran

2 Faculty of Mechanical Engineering, Department of Mechanical Engineering, Manufacturing and Production, University of Kashan, Kashan, Iran

Abstract

This study investigates the effect of ultrasonic impact treatment (UIT) on the surface structure, microhardness, and tribological behavior of L-605 superalloy. The surface of the samples was impacted by a high-frequency (20 kHz) spherical tungsten carbide tool for one, two, three, and five passes, using a feed rate of 0.08 mm/min, vibration amplitude of 28 %, and static pressure of 0.1 MPa. Results showed that UIT significantly deformed the surface microstructure and enhanced surface microhardness, primarily due to work hardening, strain-induced martensitic transformation, and ultrafine grain formation. A single UIT pass notably improved wear resistance and reduced the friction coefficient. Compared to the annealed alloy, the one-pass UITed samples showed wear rate reductions of 74%, 70%, 68%, and 64% under loads of 5, 10, 25, and 75 N, respectively. The average friction coefficient also dropped by up to 80% at 10 N and 74% at 75 N. Additional UIT passes resulted in marginal microhardness improvement, likely due to strain hardening saturation in the surface layers.

Keywords


[1] Crook, P. (1990). Cobalt and cobalt alloys, ASM Handbook, properties selection of nonferrous alloy and special-purpose material. ASM International, USA.
[2] Nemati, R., Taghiabadi, R., Saghafi Yazdi, M., & Amini, S. (2023). Effect of severe surface plastic deformation on tribological properties of CoCrWNi super alloys. Iranian Journal of Materials Forming, 10(2), 22-34. https://doi.org/10.22099/IJMF.2023.47206.1256
[3] Sharath Kumar, J., Kumar, R., & Verma, R. (2024). Surface modification aspects for improving biomedical properties in implants: A review. Acta Metallurgica Sinica (English Letters), 37(2), 213-241. https://doi.org/10.1007/s40195-023-01631-7
[4] Diaz-Rodriguez, S., Chevallier, P., Paternoster, C., Montaño-Machado, V., Noël, C., Houssiau, L., & Mantovani, D. (2019). Surface modification and direct plasma amination of L605 CoCr alloys: on the optimization of the oxide layer for application in cardiovascular implants. RSC Advances, 9(4), 2292-2301. https://doi.org/10.1039/C8RA08541B
[5] Nemati, R., Taghiabadi, R., Yazdi, M. S., & Amini, S. (2025). Ultrasonic impact treatment of CoCrWNi superalloys for surface properties improvement. Materials Testing, (2), 372-385. https://doi.org/10.1515/mt-2024-0134
[6] Schulze V., (2006). Modern mechanical surface treatment: states, stability, effects. John Wiley & Sons.
[7] López de Lacalle, L. N., Lamikiz, A., Sánchez, J. A., & Arana, J. L. (2007). The effect of ball burnishing on heat-treated steel and Inconel 718 milled surfaces. The International Journal of Advanced Manufacturing Technology, 32, 958-968. https://doi.org/10.1007/s00170-005-0402-5
[8] Acharya, S., Suwas, S., & Chatterjee, K. (2021). Review of recent developments in surface nanocrystallization of metallic biomaterials. Nanoscale, 13(4), 2286-2301. https://doi.org/10.1039/D0NR07566C
[9] Abdollahi, A., Honarpisheh, M., & Amini, S. (2024). Experimental study of the effects of the ultrasonic peening treatment on surface hardness and hardness depth of wire EDMed workpieces. Iranian Journal of Materials Forming, 11(1), 44-61. https://doi.org/10.22099/IJMF.2024.49938.1290
[10] Omidi Hashjin, A., Vahdati, M., & Abedini, R. (2024). Investigating the effect of ultrasonic shot peening parameters on metallurgical, mechanical, and corrosion properties of industrial parts: A literature review. Iranian Journal of Materials Forming. 11(2) 75-95. https://doi.org/10.22099/IJMF.2024.50081.1294
[11] Sebdani, R. M., Bilan, H. K., Gale, J. D., Wanni, J., Madireddy, G., Sealy, M. P., & Achuthan, A. (2024). Ultrasonic impact treatment (UIT) combined with powder bed fusion (PBF) process for precipitation hardened martensitic steels. Additive Manufacturing, 84, 104078. https://doi.org/10.1016/j.addma.2024.104078
[12] Ansarian, I., Taghiabadi, R., Amini, S., Mosallanejad, M. H., Iuliano, L., & Saboori, A. (2024). Improvement of surface mechanical and tribological characteristics of L-PBF processed commercially pure titanium through ultrasonic impact treatment. Acta Metallurgica Sinica (English Letters), 1-13. https://doi.org/10.1007/s40195-024-01696-y
[13] Karimi, A., & Amini, S. (2016). Steel 7225 surface ultrafine structure and improvement of its mechanical properties using surface nanocrystallization technology by ultrasonic impact. The International Journal of Advanced Manufacturing Technology, 83, 1127-1134. https://doi.org/10.1007/s00170-015-7619-8
[14] Luna-Manuel, J. C., Lagar-Quinto, S., Ramirez-Ledesma, A. L., & Juarez-Islas, J. A. (2021). Thermomechanical and annealing processing effect on a rapid solidified Co–20 wt.% Cr alloy. Journal of Physics: Conference Series (Vol. 1723, No. 1, p. 012002). IOP Publishing. https://doi.org/10.1088/1742-6596/1723/1/012002
[15] Lesyk, D. A., Martinez, S., Mordyuk, B. N., Dzhemelinskyi, V. V., Lamikiz, А., & Prokopenko, G. I. (2020). Post-processing of the Inconel 718 alloy parts fabricated by selective laser melting: Effects of mechanical surface treatments on surface topography, porosity, hardness and residual stress. Surface and Coatings Technology, 381, 125136. https://doi.org/10.1016/j.surfcoat.2019.125136
[16] Panin, A. V., Kazachenok, M. S., Kozelskaya, A. I., Balokhonov, R. R., Romanova, V. A., Perevalova, O. B., & Pochivalov, Y. I. (2017). The effect of ultrasonic impact treatment on the deformation behavior of commercially pure titanium under uniaxial tension. Materials & Design, 117, 371-381. https://doi.org/10.1016/j.matdes.2017.01.006
[17] Wang, Z., Liu, Z., Gao, C., Wong, K., Ye, S., & Xiao, Z. (2020). Modified wear behavior of selective laser melted Ti6Al4V alloy by direct current assisted ultrasonic surface rolling process. Surface and Coatings Technology, 381, 125122. https://doi.org/10.1016/j.surfcoat.2019.125122
[18] Amanov, A., Lee, S. W., & Pyun, Y. S. (2017). Low friction and high strength of 316L stainless steel tubing for biomedical applications. Materials Science and Engineering: C, 71, 176-185. https://doi.org/10.1016/j.msec.2016.10.005
[19] Amanov, A. (2021). Effect of post-additive manufacturing surface modification temperature on the tribological and tribocorrosion properties of Co-Cr-Mo alloy for biomedical applications. Surface and Coatings Technology, 421, 127378. https://doi.org/10.1016/j.surfcoat.2021.127378
[20] Abbasi, A., Amini, S., & Sheikhzadeh, G. A. (2018). Effect of ultrasonic peening technology on the thermal fatigue of rolling mill rolls. The International Journal of Advanced Manufacturing Technology, 94, 2499-2513. https://doi.org/10.1007/s00170-017-0840-x 
[21] Wang, R., Chen, D., Qin, G., & Zhang, E. (2020) Novel CoCrWNi alloys with Cu addition: Microstructure, mechanical properties, corrosion properties and biocompatibility. Journal of Alloys and Compounds, 824(25), 153924. https://doi.org/10.1016/j.jallcom.2020.153924
[22] Yamanaka, K., Mori, M., & Chiba, A. (2012). Origin of significant grain refinement in Co-Cr-Mo alloys without severe plastic deformation. Metallurgical and Materials Transactions A, 43, 4875-4887. https://doi.org/10.1007/s11661-012-1303-5
[23] Luo, J., Wu, S., Lu, Y., Guo, S., Yang, Y., Zhao, C., & Lin, J. (2018). The effect of 3 wt.% Cu addition on the microstructure, tribological property and corrosion resistance of CoCrW alloys fabricated by selective laser melting. Journal of Materials Science: Materials in Medicine, 29, 1-16. https://doi.org/10.1007/s10856-018-6043-7
[24] Knezevic, M., Carpenter, J. S., Lovato, M. L., & McCabe, R. J. (2014). Deformation behavior of the cobalt-based superalloy Haynes 25: Experimental characterization and crystal plasticity modeling, Acta Materialia, 63, 162-168. https://doi.org/10.1016/j.actamat.2013.10.021
[25] Tawancy, H. M., Ishwar, V. R., & Lewis, B. E. (1986). On the fcc→ hcp transformation in a cobalt-base superalloy (Haynes alloy No. 25). Journal of Materials Science Letters, 5(3), 337-341. https://doi.org/10.1007/BF01748098
[26] Lee, B. S., Matsumoto, H., & Chiba, A. (2011). Fractures in tensile deformation of biomedical Co–Cr–Mo–N alloys. Materials Letters, 65(5), 843-846. https://doi.org/10.1016/j.matlet.2010.12.007
[27] Akbari, F., Golkaram, M., Beyrami, S., Shirazi, G., Mantashloo, K., Taghiabadi, R., & Ansarian, I. (2024). Effect of solidification cooling rate on microstructure and tribology characteristics of Zn-4Si alloy. International Journal of Minerals, Metallurgy and Materials, 31(2), 362-373. https://doi.org/10.1007/s12613-023-2764-9
[28] Lu, Z. C., Zeng, M. Q., Gao, Y., & Zhu, M. (2013). Minimizing tribolayer damage by strength–ductility matching in dual-scale structured Al–Sn alloys: a mechanism for improving wear performance. Wear, 304(1-2), 162-172. https://doi.org/10.1016/j.wear.2013.05.001
[29] Tran, B. H., Tieu, A. K., Wan, S., Zhu, H., Mitchell, D. R., & Nancarrow, M. J. (2017). Multifunctional bi-layered tribofilm generated on steel contact interfaces under high-temperature melt lubrication. The Journal of Physical Chemistry C, 121(45), 25092-25103. https://doi.org/10.1021/acs.jpcc.7b06874
[30] Nouri, Z., & Taghiabadi, R. (2021). Tribological properties improvement of conventionally-cast Al-8.5Fe-1.3V-1.7Si alloy by multi-pass friction stir processing. Transactions of Nonferrous Metals Society of China, 31(5), 1262-1275. https://doi.org/10.1016/S1003-6326(21)65576-0 
[31] Ashoori, M., Jafarzadegan, M., Taghiabadi, R., Saghafi Yazdi, M., & Ansarian, I. (2023). Enhancing the tribological properties of pure Ti by pinless friction surface stirring. Materials Science and Technology, 39(18), 3308-3320. https://doi.org/10.1080/02670836.2023.2249749
[32] Moharrami, A., Razaghian, A., Paidar, M., Šlapáková, M., Ojo, O. O., & Taghiabadi, R. (2020). Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing. Materials Chemistry and Physics, 250, 123066. https://doi.org/10.1016/j.matchemphys.2020.123066
[33] Hutchings I., & Shipway P. (2017). Tribology: friction and wear of engineering materials. Butterworth-Heinemann.
[34] Ataee, A., Li, Y., & Wen, C. (2019). A comparative study on the nanoindentation behavior, wear resistance and in vitro biocompatibility of SLM manufactured CP–Ti and EBM manufactured Ti64 gyroid scaffolds. Acta Biomaterialia, 97, 587-596. https://doi.org/10.1016/j.actbio.2019.08.008
[35] Attar, H., Ehtemam-Haghighi, S., Kent, D., Okulov, I. V., Wendrock, H., Bӧnisch, M., & Dargusch, M. S. (2017). Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Materials Science and Engineering: A, 688, 20-26. https://doi.org/10.1016/j.msea.2017.01.096
[36] Shahriyari, F., Taghiabadi, R., Razaghian, A., & Mahmoudi, M. (2018). Effect of friction hardening on the surface mechanical properties and tribological behavior of biocompatible Ti-6Al-4V alloy. Journal of Manufacturing Processes, 31, 776-786. https://doi.org/10.1016/j.jmapro.2017.12.016
[37] Sarmadi, H., Kokabi, A. H., & Reihani, S. S. (2013). Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP). Wear, 304(1-2), 1-12. https://doi.org/10.1016/j.wear.2013.04.023
[38] Samuel, C., Arivarasu, M., & Prabhu, T. R. (2020). High temperature dry sliding wear behaviour of laser powder bed fused Inconel 718. Additive Manufacturing, 34, 101279. https://doi.org/10.1016/j.addma.2020.101279