[3] Kah, P., Rajan, R., Martikainen, J., & Suoranta. R. (2015). Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. International Journal of Mechanical and Materials Engineering, 10(1), 1-10.
https://doi.org/10.1186/s40712-015-0053-8
[4] Ma, Z., Sharma, S., & Mishra. R. (2006). Effect of friction stir processing on the microstructure of cast A356 aluminum. Materials Science and Engineering: A, 433(1-2), 269-278.
https://doi.org/10.1016/j.msea.2006.06.099
[5] Cao, X., Wallace, W., Immarigeon, J. P., & Poon. C. (2003). Research and progress in laser welding of wrought aluminum alloys. II. Metallurgical microstructures, defects, and mechanical properties. Materials and Manufacturing Processes, 18(1), 23-49.
https://doi.org/10.1081/AMP-120017587
[6] Mandal, N. R. (2017). Ship construction and welding (Vol. 329). Springer.
[7] Rajawat, M. S., Pagrut, S., Dwivedi, S., Raj, R., & Dixit. A. R. (2022). Microstructural characterization of friction stir assisted laminated lap welding of AA6063 sheets. Materials Today: Proceedings, 56(949-953).
https://doi.org/10.1016/j.matpr.2022.02.633
[9] Hossfeld, M. (2023). On friction, heat input, and material flow initiation during friction stir welding: tool and process optimization. Journal of Manufacturing and Materials Processing, 7(1), 34.
https://doi.org/10.3390/jmmp7010034
[10] Kallee, S. W. (2010). Industrial applications of friction stir welding. In Friction stir welding (pp. 118-163). Woodhead Publishing.
[11] Ahmed, M. M., El-Sayed Seleman, M. M., Fydrych, D. & Çam. G. (2023). Friction stir welding of aluminum in the aerospace industry: the current progress and state-of-the-art review. Materials, 16(8), 2971.
https://doi.org/10.3390/ma16082971
[12] Singh, V. P., Patel, S. K., Ranjan, A., & Kuriachen, B. (2020). Recent research progress in solid state friction-stir welding of aluminium–magnesium alloys: a critical review. Journal of Materials Research and Technology, 9(3), 6217-6256.
https://doi.org/10.1016/j.jmrt.2020.01.008
[13] Sonar, T., Ivanov, M., Trofimov, E., Tingaev, A., & Suleymanova. I. (2023). A critical review on solid-state welding of high entropy alloys–processing, microstructural characteristics and mechanical properties of joints. Defence Technology, 34, 78-133.
https://doi.org/10.1016/j.dt.2023.08.001
[14] Zhao, Y., Lu, Z., Yan, K., & Huang, L., (2015). Microstructural characterizations and mechanical properties in underwater friction stir welding of aluminum and magnesium dissimilar alloys. Materials & Design (1980-2015), 65, 675-681.
https://doi.org/10.1016/j.matdes.2014.09.046
[16] Khojastehnezhad, V. M., & Pourasl, H. H. (2018). Microstructural characterization and mechanical properties of aluminum 6061-T6 plates welded with copper insert plate (Al/Cu/Al) using friction stir welding. Transactions of Nonferrous Metals Society of China, 28(3), 415-426.
https://doi.org/10.1016/S1003-6326(18)64675-8
[17] Tan, C. W., Jiang, Z. G., Li, L. Q., Chen, Y. B., & Chen, X. Y. (2013). Microstructural evolution and mechanical properties of dissimilar Al–Cu joints produced by friction stir welding. Materials & Design, 51, 466-473.
https://doi.org/10.1016/j.matdes.2013.04.056
[18] Xue, P., Xiao, B. L., Ni, D. R., & Ma, Z. Y. (2010). Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials Science and Engineering: A, 527(21-22), 5723-5727.
https://doi.org/10.1016/j.msea.2010.05.061
[19] Leon, J. S., & Jayakumar, V. (2014). Investigation of mechanical properties of aluminium 6061 alloy friction stir welding. International Journal of Students’ Research in Technology & Management, 2(04), 140-144.
[20] Esmaeili, A., Givi, M. B., & Rajani. H. Z. (2012). Investigation of weld defects in dissimilar friction stir welding of aluminium to brass by radiography. Science and Technology of Welding and Joining, 17(7), 539-543.
https://doi.org/10.1179/1362171812Y.0000000044
[21] Zhang C., & Shirzadi. A. A. (2018). Measurement of residual stresses in dissimilar friction stir-welded aluminium and copper plates using the contour method. Science and Technology of Welding and Joining, 23(5), 394-399.
https://doi.org/10.1080/13621718.2017.1402846
[22] Morishige, T., Kawaguchi, A., Tsujikawa, M., Hino, M., Hirata, T., & Higashi. K. (2008). Dissimilar welding of Al and Mg alloys by FSW. Materials Transactions, 49(5), 1129-1131.
https://doi.org/10.2320/matertrans.MC200768
[23] Li, X. W, Zhang, D. T., Qiu, C., & Zhang, W. (2012). Microstructure and mechanical properties of dissimilar pure copper/1350 aluminum alloy butt joints by friction stir welding. Transactions of Nonferrous Metals Society of China, 22(6), 1298-1306.
https://doi.org/10.1016/S1003-6326(11)61318-6
[24] Song, S. W., Kim, B. C., Yoon, T. J., Kim, N. K., Kim, I. B., & Kang, C. Y. (2010). Effect of welding parameters on weld formation and mechanical properties in dissimilar Al alloy joints by FSW. Materials Transactions, 51(7), 1319-1325.
https://doi.org/10.2320/matertrans.M2010032
[25] Jafari, H., Honarpisheh, M., & Mansouri, H. (2019). Investigation of mechanical properties of friction stir welded dissimilar 6061-T6 and 7075-T6 aluminum alloys. In Proceedings of the 27th Annual International Conference of Iranian Society of Mechanical Engineers (ISME2019). Tehran, Iran.
[26] Jafari, H., Mansouri, H., & Honarpisheh, M. (2019). Investigation of residual stress distribution of dissimilar Al-7075-T6 and Al-6061-T6 in the friction stir welding process strengthened with SiO2 nanoparticles. Journal of Manufacturing Processes, 43, 145-153.
https://doi.org/10.1016/j.jmapro.2019.05.023
[27] Abdollah-Zadeh, A., Saeid, T., & Sazgari. B. (2008). Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. Journal of Alloys and Compounds, 460(1-2), 535-538.
https://doi.org/10.1016/j.jallcom.2007.06.009
[28] Akinlabi, E. T. (2010). Characterisation of dissimilar friction stir welds between 5754 aluminium alloy and C11000 copper [Doctoral dissertation, Nelson Mandela Metropolitan University].
http://hdl.handle.net/10948/1536
[29] Liu, P., Shi, Q., Wang, W., Wang, X., & Zhang, Z. (2008). Microstructure and XRD analysis of FSW joints for copper T2/aluminium 5A06 dissimilar materials. Materials Letters, 62(25), 4106-4108.
https://doi.org/10.1016/j.matlet.2008.06.004
[30] Bisadi, H., Tavakoli, A., Sangsaraki, M. T., & Sangsaraki, K. T. (2013). The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Materials & Design, 43, 80-88.
https://doi.org/10.1016/j.matdes.2012.06.029
[31] Zhang, Q. Z., & Wei, L. I. U. (2015). Microstructure and mechanical properties of dissimilar Al–Cu joints by friction stir welding. Transactions of Nonferrous Metals Society of China, 25(6), 1779-1786.
https://doi.org/10.1016/S1003-6326(15)63783-9
[32] Xue, P., Ni, D. R., Wang, D., Xiao, B. L., & Ma, Z. Y. (2011). Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al–Cu joints. Materials Science and Engineering: A, 528(13-14), 4683-4689.
https://doi.org/10.1016/j.msea.2011.02.067