Mechanical and Thermal Characteristics of Clay-Incorporated Vinyl Ester Composite

Document Type : Research Paper

Authors

1 Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran

2 Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, 71555, Iran

3 School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, 4001, Australia

Abstract

Vinyl ester (VE) polymer composites reinforced with varying amounts of clay were synthesized using an ultrasonic dispersion technique with the addition of methyl ethyl ketone peroxide (MEKP), cobalt napthalate and benzoyl peroxide as initiators and catalysts. The mechanical and thermal properties of these clay-filled VE composites were systematically evaluated. Mechanical testing—including tensile, flexural, and impact analysis—was conducted using a universal testing machine (UTM) and an Izod impact tester. The incorporation of clay at 0, 5, 10, and 15 wt.% enhanced the tensile strength of the composites to values of 105, 120, and 125 MPa, respectively, compared to 86 MPa for the pristine VE. Similarly, flexural strength increased to 145, 160, and 190 MPa from an initial 125 MPa. In contrast, impact energy remained relatively unchanged with clay addition. Thermal behavior assessed through thermogravimetric analyzer (TGA) revealed that higher clay loadings resulted in increased decomposition temperatures and residual weight. The T50% analysis reveals that an increase in clay content leads to higher degradation temperatures and as a result, greater residual weight. The T50% values are 350, 500, 550, and 650 °C for the 0, 5, 10, and 15 wt.% clay composites, respectively. Overall, the inclusion of clay significantly improved both the mechanical and thermal performance of the VE matrix.

Keywords


[1] Hemath, M., Mavinkere Rangappa, S., Kushvaha, V., Dhakal, H. N., & Siengchin, S. (2020). A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polymer Composites, 41(10), 3940–3965. https://doi.org/10.1002/pc.25703
[2] Diniță, A., Ripeanu, R. G., Ilincă, C. N., Cursaru, D., Matei, D., Naim, R. I., Tănase, M., & Portoacă, A. I. (2023). Advancements in fiber-reinforced polymer composites: a comprehensive analysis. Polymers, 16(1), 2. https://doi.org/10.3390/polym16010002
[3] Chandradass, J., Ramesh Kumar, M., & Velmurugan, R. (2008). Effect of clay dispersion on mechanical, thermal and vibration properties of glass fiber-reinforced vinyl ester composites. Journal of Reinforced Plastics and Composites, 27(15), 1585–1601. https://doi.org/10.1177/0731684407081368
[4] Gabr, M. H., Okumura, W., Ueda, H., Kuriyama, W., Uzawa, K., & Kimpara, I. (2015). Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Composites Part B: Engineering, 69, 94-100. https://doi.org/10.1016/j.compositesb.2014.09.033
[5] Essabir, H., Boujmal, R., Bensalah, M.O., Rodrigue, D., Bouhfid, R., & Kacem Qaiss, A. (2016). Mechanical and thermal properties of hybrid composites: Oil-palm fiber/clay reinforced high density polyethylene. Mechanics of Materials, 98, 36-43. https://doi.org/10.1016/j.mechmat.2016.04.008
[6] Balasubramanian, M. (2014). Composite materials and processing (Vol. 711). Boca Raton: CRC press.
[7] Alateyah, A. I., Dhakal, H. N., & Zhang, Z. Y. (2013). Processing, properties, and applications of polymer nanocomposites based on layer silicates: a review. Advances in Polymer Technology, 32(4). https://doi.org/10.1002/adv.21368
[8] Zhu, T. T., Zhou, C. H., Kabwe, F. B., Wu, Q. Q., Li, C. S., & Zhang, J. R. (2019). Exfoliation of montmorillonite and related properties of clay/polymer nanocomposites. Applied Clay Science, 169, 48–66. https://doi.org/10.1016/j.clay.2018.12.006
[9] Pan, Q., Wu, H., Su, D., Chen, X., & Phoon, K. K. (2024) Multivariate probability distributions for index and mechanical clay parameters in Shenzhen. Computers and Geotechnics, 165, 105934. https://doi.org/10.1016/j.compgeo.2023.105934
[10] Lan, T., Kaviratna, P. D., & Pinnavaia, T. J. (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. Chemistry of Materials, 7(11), 2144–2150.
[11] Huang, T. K., Chiou, J. Y., Wang, Y. C., Hsieh, K. H., & Lin, J. J. (2016). Unusual exfoliation of layered silicate clays by non-aqueous amine diffusion mechanism. Journal of Polymer Research, 23, 1–7. https://doi.org/10.1007/s10965-016-1035-0
[12] Jaswal, S., & Gaur, B. (2014). New trends in vinyl ester resins. Reviews in Chemical Engineering, 30(6), 567–581. https://doi.org/10.1515/revce-2014-0012
[13] Li, Y. M., Hu, S. L., Fang, H. P., Deng, Y., Yang, C. D., & Wang, D. Y. (2024). The designation of intrinsic flame-retarding vinyl ester resins with high mechanical property, optical transparency and degradability. Chemical Engineering Journal, 479, 147786. https://doi.org/10.1016/j.cej.2023.147786
[14] Surya, R., Mullassery, M. D., Fernandez, N. B., & Thomas, D. (2024). Exfoliated clay-polymer nanocomposite as a promising delivery system for bovine serum albumin. Indian Chemical Engineer, 66(1), 70–83. https://doi.org/10.1080/00194506.2023.2280651
[15] Pinnell, M., Fields, R., & Zabora, R. (2005). Results of an interlaboratory study of the ASTM standard test method for tensile properties of polymer matrix composites D 3039. Journal of Testing and Evaluation, 33(1), 27–31. https://doi.org/10.1520/JTE12521
[16] Nader, J. W., Dagher, H. J., Lopez-Anido, R., El Chiti, F., Fayad, G. N., & Thomson, L. (2008). Probabilistic finite element analysis of modified ASTM D3039 tension test for marine grade polymer matrix composites. Journal of Reinforced Plastics and Composites, 27(6), 583–597. https://doi.org/10.1177/07316844070799152008
[17] DIN, E. (2011). 14125: Faserverstärkte Kunststoffe–Bestimmung der Biegeeigenschaften. DIN Deutsches Institut für Normung e. V., Berlin.
[18] Domeier, L., Skala, D., & Goods, S. H. (1997). Fabrication and evaluation of uniform and gradient density epoxies. Sandia Labs., Livermore, CA (United States).
[19] Razavi, S. M., Dehghanpour, N., Ahmadi, S. J., & Rajabi Hamaneh, M. (2015). Thermal, mechanical, and corrosion resistance properties of vinyl ester/clay nanocomposites for the matrix of carbon fiber‐reinforced composites exposed to electron beam. Journal of Applied Polymer Science, 132(33). https://doi.org/10.1002/app.42393
[20] Wetzel, B., Haupert, F., Friedrich, K., Zhang, M. Q., & Rong, M. Z. (2002). Impact and wear resistance of polymer nanocomposites at low filler content. Polymer Engineering & Science, 42(9), 1919–1927. https://doi.org/10.1002/pen.11084
[21] Delage, P. (2013). On the thermal impact on the excavation damaged zone around deep radioactive waste disposal. Journal of Rock Mechanics and Geotechnical Engineering, 5(3), 179–190. https://doi.org/10.1016/j.jrmge.2013.04.002
[22] Ray, D., Sengupta, S., Sengupta, S., Mohanty, A. K., & Misra, M. (2006). Preparation and properties of vinylester resin/clay nanocomposites. Macromolecular Materials and Engineering, 291(12), 1513–1520. https://doi.org/10.1002/mame.200600289