Micromechanical Modeling of Two-Way Shape Memory Response of Semi-Crystalline Polymers Based on Equivalent Inclusion Method

Document Type : Research Paper

Authors

Department of Materials Science and Engineering, K. N. Toosi University and Technology, Tehran, Iran

Abstract

Two-way shape memory polymers (2W-SMPs) are a class of intelligent materials that demonstrate reversible form memory, rendering them suitable for a wide range of applications in response to external stimuli. During the phase transition in the shape memory cycle of semi-crystalline polymers, the 2W-SMPs are represented as a two-phase material, consisting of an amorphous matrix and the crystalline inclusions. This paper employs the Equivalent Inclusion Method (EIM), based on the Modified-Mori-Tanaka (MMT) approach, to determine the effective thermomechanical response of inclusions inside a heterogeneous matrix. Unlike existing phase transition models, the proposed model accounts for both phase interactions and the morphology (shape and size) of the inclusion phase throughout the thermomechanical cycle. The model was implemented using the UMAT user subroutine in ABAQUS to simulate the mechanical behavior of SMPs. Analysis of various inclusion shapes revealed that ellipsoidal shapes most accurately represent the morphology of the inclusion phase. In particular, a highly elongated ellipsoidal inclusion (a/c = 1/25) provided the best agreement with simulation results. A fivefold increase in the (a/c) aspect ratio of the crystalline inclusions resulted in approximately 10% increase in crystallization-induced strain, thereby improving consistency with shape memory experiments when the actual morphology was considered. The shape memory response of PCL under a stress of 250 kPa demonstrated a ~12.5% strain increase during cooling from 65 to -40 ̊C, with about 7% occurring near the crystallization point over a 40 ̊C interval. Incorporating phase interactions significantly enhanced the model's agreement with experimental results on shape recovery.

Keywords


[1] Vaziri, S., & Narooei, K. (2024). Investigation of post-buckling, energy harvesting, and relaxation of shape memory auxetic structure with thermo-visco-hyperelastic modeling. Iranian Journal of Materials Forming, 11(3), 28-39. https://doi.org/10.22099/ijmf.2024.51080.1302
[2] Ghorbanoghli, A., & Narooei, K. (2019). A new hyper-viscoelastic model for investigating rate dependent mechanical behavior of dual cross link self-healing hydrogel. International Journal of Mechanical Sciences, 159, 278-286. https://doi.org/10.1016/j.ijmecsci.2019.06.019
[3] Fang-Fang, L., & Guo-Liang, L. (2025). Rational molecular Design: Advances in stimuli-responsive shape memory polymers and composites. European Polymer Journal, 223, 113642. https://doi.org/10.1016/j.eurpolymj.2024.113642
[4] Hosseinzadeh, M., Ghoreishi, M., & Narooei, K. (2023). 4D printing of shape memory polylactic acid beams: An experimental investigation into FDM additive manufacturing process parameters, mathematical modeling, and optimization. Journal of Manufacturing Processes, 85, 774-782. https://doi.org/10.1016/j.jmapro.2022.12.006
[5] He, Q., Zhao, Z., Zhong, Q., Liu, S., Deng, K., Liu, Y., Zhang, N., Zhao, Z., Zhan, F., & Zhao, J. (2024). Switchable shape memory polymer bio-inspired adhesive and its application for unmanned aerial vehicle landing. Chinese Journal of Aeronautics, 37(3), 380-390. https://doi.org/10.1016/j.cja.2023.09.032
[6] Hosseinzadeh, M., Ghoreishi, M., & Narooei, K. (2021). An investigation into the effect of thermal variables on the 3D printed shape memory polymer structures with different geometries. Journal of Intelligent Material Systems and Structures, 33(5), 715-726. https://doi.org/10.1177/1045389X211028286
[7] Prem Kumar, C., N., S., D., L., Naga, M. R. G., & Vakkalagadda, M. R. K. Shape memory polymers, blends, and composites: processing, properties, and applications. Polymer-Plastics Technology and Materials, 1-29. https://doi.org/10.1080/25740881.2025.2460063
[8] Ke, D., Chen, Z., Momo, Z. Y., Jiani, W., Xuan, C., Xiaojie, Y., & Xueliang, X. (2020). Recent advances of two-way shape memory polymers and four-dimensional printing under stress-free conditions. Smart Materials and Structures, 29(2), 023001. https://doi.org/10.1088/1361-665X/ab5e6d
[9] Basak, S., & Bandyopadhyay, A. (2022). Two-way semicrystalline shape memory elastomers: development and current research trends. Advanced Engineering Materials, 24(10), 2200257. https://doi.org/10.1002/adem.202200257
[10] Scalet, G. (2020). Two-way and multiple-way shape memory polymers for soft robotics: An overview. Actuators, 9(1), 10. https://doi.org/10.3390/act9010010
[11] Zeng, H., Sun, H., & Gu, J. (2021). Modeling the one-way and two-way shape memory effects of semi-crystalline polymers. Smart Materials and Structures, 30(9), 095020. https://doi.org/10.1088/1361-665X/ac179e
[12] Rashidi, M., & Narooei, K. (2020). Structural mechanics approach to investigate the hyperelastic mechanical behavior of single and multi-wall carbon nanotubes. Iranian Journal of Materials Forming, 7(2), 88-103. https://doi.org/10.22099/ijmf.2020.37930.1163
[13] Dolynchuk, O., Kolesov, I., & Radusch, H. J. (2014). Theoretical description of an anomalous elongation during two-way shape-memory effect in crosslinked semicrystalline polymers. Macromolecular Symposia, 346(1), 48-58. https://doi.org/10.1002/masy.201400065
[14] Yan, C., Yang, Q., & Li, G. (2020). A phenomenological constitutive model for semicrystalline two-way shape memory polymers. International Journal of Mechanical Sciences, 177, 105552. https://doi.org/10.1016/j.ijmecsci.2020.105552
[15] Janbaz, S., Narooei, K., van Manen, T., & Zadpoor, A. A. (2020). Strain rate–dependent mechanical metamaterials. Science Advances, 6(25), eaba0616. https://doi.org/10.1126/sciadv.aba0616
[16] Liang, Z., Li, J., Zhang, X., & Kan, Q. (2023). A viscoelastic-viscoplastic constitutive model and its finite element implementation of amorphous polymers. Polymer Testing, 117, 107831. https://doi.org/10.1016/j.polymertesting.2022.107831
[17] Liu, Y., Gall, K., Dunn, M. L., Greenberg, A. R., & Diani, J. (2006). Thermomechanics of shape memory polymers: Uniaxial experiments and constitutive modeling. International Journal of Plasticity, 22(2), 279-313. https://doi.org/10.1016/j.ijplas.2005.03.004
[18] Srivastava, V., Chester, S. A., & Anand, L. (2010). Thermally actuated shape-memory polymers: Experiments, theory, and numerical simulations. Journal of the Mechanics and Physics of Solids, 58(8), 1100-1124. https://doi.org/10.1016/j.jmps.2010.04.004
[19] Bakhtiari, M., & Narooei, K. (2025). A micromechanical model to predict the effective thermomechanical behavior of one-way shape memory polymers. Mechanics of Materials, 201, 105230. https://doi.org/10.1016/j.mechmat.2024.105230
[20] Nemat-Nasser, S., & Hori, M., (2013). Micromechanics: overall properties of heterogeneous materials. Elsevier.
[21] Voigt, W. (1928). Crystal physics textbook. Journal of Modern Physics, 9(4), 80-85.
[22] Reuss, A. (1929). Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals. Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), 49-58. https://doi.org/10.1002/zamm.19290090104
[23] Mori, T., & Tanaka, K. (1973). Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5), 571-574. https://doi.org/10.1016/0001-6160(73)90064-3
[24] Nemat-Nasser, S., Su, Y., Guo, W. G., & Isaacs, J. (2005). Experimental characterization and micromechanical modeling of superelastic response of a porous NiTi shape-memory alloy. Journal of the Mechanics and Physics of Solids, 53(10), 2320-2346. https://doi.org/10.1016/j.jmps.2005.03.009
[25] Kachanov, M., & Sevostianov, I., (2018). Micromechanics of materials, with applications. Springer.
[26] Poluektov, M., Freidin, A. B., & Figiel, Ł. (2019). Micromechanical modelling of mechanochemical processes in heterogeneous materials. Modelling and Simulation in Materials Science and Engineering, 27(8), 084005. https://doi.org/10.1088/1361-651X/ab3b3a
[27] Baniassadi, M., Baghani, M., & Rémond, Y., (2023). Applied micromechanics of complex microstructures: Computational modeling and numerical characterization. Elsevier.
[28] Umer, U., Abidi, M. H., Almutairi, Z., & El-Meligy, M. A. (2024). Micromechanics evaluation of equivalent temperature-dependent stiffness of graphene-reinforced shape memory polymer nanocomposites. Results in Engineering, 24, 102978. https://doi.org/10.1016/j.rineng.2024.102978
[29] Tang, T., & Felicelli, S. D. (2015). Micromechanical investigations of polymer matrix composites with shape memory alloy reinforcement. International Journal of Engineering Science, 94, 181-194. https://doi.org/10.1016/j.ijengsci.2015.05.008
[30] Guo, Q., & Zaïri, F. (2021). A micromechanics-based model for deformation-induced damage and failure in elastomeric media. International Journal of Plasticity, 140, 102976. https://doi.org/10.1016/j.ijplas.2021.102976
[31] Yang, Q., & Li, G. (2016). Temperature and rate dependent thermomechanical modeling of shape memory polymers with physics based phase evolution law. International Journal of Plasticity, 80, 168-186. https://doi.org/10.1016/j.ijplas.2015.09.005
[32] Fulati, A., Uto, K., & Ebara, M. (2022). Influences of crystallinity and crosslinking density on the shape recovery force in poly(ε-caprolactone)-based shape-memory polymer blends. Polymers, 14(21), 4740. https://doi.org/10.3390/polym14214740
[33] Westbrook, K. K., Mather, P. T., Parakh, V., Dunn, M. L., Ge, Q., Lee, B. M., & Qi, H. J. (2011). Two-way reversible shape memory effects in a free-standing polymer composite. Smart Materials and Structures, 20(6), 065010. https://doi.org/10.1088/0964-1726/20/6/065010
[34] Scalet, G., Pandini, S., Messori, M., Toselli, M., & Auricchio, F. (2018). A one-dimensional phenomenological model for the two-way shape-memory effect in semi-crystalline networks. Polymer, 158, 130-148. https://doi.org/10.1016/j.polymer.2018.10.027
[35] Gu, J., Wang, C., Zeng, H., Duan, H., Wan, M., & Sun, H. (2024). A thermo-mechanical constitutive model for triple-shape and two-way shape memory polymers. Smart Materials and Structures, 33(6), 065034. https://doi.org/10.1088/1361-665X/ad4cc2
[36] Kim, J. H., Kang, T. J., & Yu, W. R. (2010). Thermo-mechanical constitutive modeling of shape memory polyurethanes using a phenomenological approach. International Journal of Plasticity, 26(2), 204-218. https://doi.org/10.1016/j.ijplas.2009.06.006
[37] Gilormini, P., & Diani, J. (2012). On modeling shape memory polymers as thermoelastic two-phase composite materials. Comptes Rendus Mécanique, 340(4), 338-348. https://doi.org/10.1016/j.crme.2012.02.016
[38] Chen, Y. C., & Lagoudas, D. C. (2008). A constitutive theory for shape memory polymers. Part I: Large deformations. Journal of the Mechanics and Physics of Solids, 56(5), 1752-1765. https://doi.org/10.1016/j.jmps.2007.12.005
[39] Smith Jr, K. J. (1983). Crystallization under stress: A theory of fibrillar crystallization. Journal of Polymer Science: Polymer Physics Edition, 21(1), 55-63. https://doi.org/10.1002/pol.1983.180210105
[40] Abdul-Hameed, H., Messager, T., Ayoub, G., Zaïri, F., Naït-Abdelaziz, M., Qu, Z., & Zaïri, F. (2014). A two-phase hyperelastic-viscoplastic constitutive model for semi-crystalline polymers: Application to polyethylene materials with a variable range of crystal fractions. Journal of the Mechanical Behavior of Biomedical Materials, 37, 323-332. https://doi.org/10.1016/j.jmbbm.2014.04.016
[41] Nguyen, T. L., Bédoui, F., Mazeran, P. E., & Guigon, M. (2015). Mechanical investigation of confined amorphous phase in semicrystalline polymers: Case of PET and PLA. Polymer Engineering & Science, 55(2), 397-405. https://doi.org/10.1002/pen.23896
[42] Chen, J. (2021). Advanced electron microscopy of nanophased synthetic polymers and soft complexes for energy and medicine applications. Nanomaterials, 11(9), 2405. https://doi.org/10.3390/nano11092405
[43] Brusselle-Dupend, N., & Cangémi, L. (2008). A two-phase model for the mechanical behaviour of semicrystalline polymers. Part I: Large strains multiaxial validation on HDPE. Mechanics of Materials, 40(9), 743-760. https://doi.org/10.1016/j.mechmat.2008.03.011
[44] Bédoui, F., Diani, J., Régnier, G., & Seiler, W. (2006). Micromechanical modeling of isotropic elastic behavior of semicrystalline polymers. Acta Materialia, 54(6), 1513-1523. https://doi.org/10.1016/j.actamat.2005.11.028
[45] Mura, T., (2013). Micromechanics of defects in solids. Springer Science & Business Media.
[46] Baghani, M., Naghdabadi, R., Arghavani, J., & Sohrabpour, S. (2012). A constitutive model for shape memory polymers with application to torsion of prismatic bars. Journal of Intelligent Material Systems and Structures, 23(2), 107-116. https://doi.org/10.1177/1045389X11431745
[47] Pandini, S., Baldi, F., Paderni, K., Messori, M., Toselli, M., Pilati, F., Gianoncelli, A., Brisotto, M., Bontempi, E., & Riccò, T. (2013). One-way and two-way shape memory behaviour of semi-crystalline networks based on sol–gel cross-linked poly(ε-caprolactone). Polymer, 54(16), 4253-4265. https://doi.org/10.1016/j.polymer.2013.06.016
[48] Wurm, A., Lellinger, D., Minakov, A. A., Skipa, T., Pötschke, P., Nicula, R., Alig, I., & Schick, C. (2014). Crystallization of poly(ε-caprolactone)/MWCNT composites: A combined SAXS/WAXS, electrical and thermal conductivity study. Polymer, 55(9), 2220-2232. https://doi.org/10.1016/j.polymer.2014.02.069
[49] Tencé-Girault, S., Woehling, V., Oikonomou, E. K., Karpati, S., & Norvez, S. (2018). About the art and science of visualizing polymer morphology using transmission electron microscopy. Macromolecular Chemistry and Physics, 219(3), 1700483. https://doi.org/10.1002/macp.201700483