Activation Energy and Zener-Hollomon Mapping of Hot-Deformed API X80 Steel Using Modified Hyperbolic Sine Constitutive Models

Document Type : Research Paper

Authors

Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

This study investigates the hot deformation behavior of API X80 pipeline steel using modified hyperbolic sine-based constitutive models. Uniaxial compression tests were conducted at temperatures of 950 to 1100 °C and strain rates of 0.001 to 1 s⁻¹. Five constitutive approaches were evaluated: linear-linear Shi (LLS), linear-polynomial Shi (LPS), polynomial-polynomial Shi (PPS), and polynomial-polynomial Yang (PPY). Results indicate that activation energy (Q) varies significantly with deformation conditions. While the constant Q (CAE) model provides reasonable predictive accuracy and remains useful for simplified analysis, the PPY model demonstrates superior performance by capturing complex dependencies between stress, temperature, and strain rate. Zener-Hollomon (Z) maps and Q contours further illustrate the impact of model selection on process prediction. These findings establish a reliable computational framework for accurately modeling and optimizing hot deformation in high-strength steels.

Keywords


[1] Sang, D., Fu, R., & Li, Y. (2016). The hot deformation activation energy of 7050 aluminum alloy under three different deformation modes. Metals, 6(3), 49. https://doi.org/10.3390/met6030049
[2] Schindler, I., Kawulok, P., Očenášek, V., Opěla, P., Kawulok, R., & Rusz, S. (2019). Flow stress and hot deformation activation energy of 6082 aluminium alloy influenced by initial structural state. Metals, 9(12), 1248. https://doi.org/10.3390/met9121248
[3] Momeni, A. (2016). The physical interpretation of the activation energy for hot deformation of Ni and Ni–30Cu alloys. Journal of Materials Research, 31(8), 1077-1084. https://doi.org/10.1557/jmr.2016.81
[4] Sellars, C. M., & McTegart, W. J. (1966). On the mechanism of hot deformation. Acta Metallurgica, 14(9), 1136-1138. https://doi.org/10.1016/0001-6160(66)90207-0
[5] Shi, C., Mao, W., & Chen, X.-G. (2013). Evolution of activation energy during hot deformation of AA7150 aluminum alloy. Materials Science and Engineering: A, 571, 83-91. https://doi.org/10.1016/j.msea.2013.01.080
[6] Shi, C., & Chen, X.-G. (2016). Evolution of activation energies for hot deformation of 7150 aluminum alloys with various Zr and V additions. Materials Science and Engineering: A, 650, 197-209. https://doi.org/10.1016/j.msea.2015.09.105
[7] Son, K. T., Kim, M. H., Kim, S. W., Lee, J. W., & Hyun, S. K. (2018). Evaluation of hot deformation characteristics in modified AA5052 using processing map and activation energy map under deformation heating. Journal of Alloys and Compounds, 740, 96-108. https://doi.org/10.1016/j.jallcom.2017.12.357
[8] Sun, Y., Wan, Z., Hu, L., & Ren, J. (2015). Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map. Materials & Design, 86, 922-932. https://doi.org/10.1016/j.matdes.2015.07.140
[9] Zhao, Q., Yang, F., Torrens, R., & Bolzoni, L. (2019). Comparison of hot deformation behaviour and microstructural evolution for Ti-5Al-5V-5Mo-3Cr alloys prepared by powder metallurgy and ingot metallurgy approaches. Materials & Design, 169, 107682. https://doi.org/10.1016/j.matdes.2019.107682
[10] Zhang, J., Di, H., Wang, H., Mao, K., Ma, T., & Cao, Y. (2012). Hot deformation behavior of Ti-15-3 titanium alloy: a study using processing maps, activation energy map, and Zener–Hollomon parameter map. Journal of Materials Science, 47(9), 4000-4011. https://doi.org/10.1007/s10853-012-6253-1
[11] Babu, K. A., Mozumder, Y. H., Saha, R., Sarma, V. S., & Mandal, S. (2018). Hot-workability of super-304H exhibiting continuous to discontinuous dynamic recrystallization transition. Materials Science and Engineering: A, 734, 269-280. https://doi.org/10.1016/j.msea.2018.07.104
[12] Wang, M., Wang, W., Liu, Z., Sun, C., & Qian, L. (2018). Hot workability integrating processing and activation energy maps of Inconel 740 superalloy. Materials Today Communications, 14, 188-198. https://doi.org/10.1016/j.mtcomm.2018.01.009
[13] Yang, P., Liu, C., Guo, Q., & Liu, Y. (2021). Variation of activation energy determined by a modified Arrhenius approach: Roles of dynamic recrystallization on the hot deformation of Ni-based superalloy. Journal of Materials Science & Technology, 72, 162-171. https://doi.org/10.1016/j.jmst.2020.09.024
[14] Fangpo, L., Ning, L., Xiaojian, R., Song, Q., Caihong, L., Jianjun, W., Yang, X., & Bin, W. (2023). Arrhenius constitutive equation and artificial neural network model of flow stress in hot deformation of offshore steel with high strength and toughness. Materials Technology, 38(1), 2264670. https://doi.org/10.1080/10667857.2023.2264670
[15] Abarghooei, H., Arabi, H., Seyedein, S. H., & Mirzakhani, B. (2017). Modeling of steady state hot flow behavior of API-X70 microalloyed steel using genetic algorithm and design of experiments. Applied Soft Computing, 52, 471-477. https://doi.org/10.1016/j.asoc.2016.10.021
[16] Ahmadi, H., Ashtiani, H. R., & Heidari, M. (2020). A comparative study of phenomenological, physically-based and artificial neural network models to predict the Hot flow behavior of API 5CT-L80 steel. Materials Today Communications, 25, 101528. https://doi.org/10.1016/j.mtcomm.2020.101528
[17] Qiao, G. Y., Xiao, F. R., Zhang, X. B., Cao, Y. B., & Liao, B. (2009). Effects of contents of Nb and C on hot deformation behaviors of high Nb X80 pipeline steels. Transactions of Nonferrous Metals Society of China, 19(6), 1395-1399. https://doi.org/10.1016/S1003-6326(09)60039-X
[18] Gomez, M., Valles, P., & Medina, S. F. (2011). Evolution of microstructure and precipitation state during thermomechanical processing of a X80 microalloyed steel. Materials Science and Engineering: A, 528(13-14), 4761-4773. https://doi.org/10.1016/j.msea.2011.02.087
[19] Shen, W., Zhang, C., Zhang, L., Xu, Q., & Cui, Y. (2018). Experimental study on the hot deformation characterization of low-carbon Nb-V-Ti microalloyed steel. Journal of Materials Engineering and Performance, 27, 4616-4624. https://doi.org/10.1007/s11665-018-3594-1
[20] Mendes‐Fonseca, N., Rodrigues, S. F., Guo, B., & Jonas, J. J. (2019). Dynamic transformation during the simulated hot rolling of an API‐X80 steel. Steel Research International, 90(8), 1900091. https://doi.org/10.1002/srin.201900091
[21] Eskandari, H., Reihanian, M., & Zaree, S. A. (2024). Constitutive modeling, processing map optimization, and recrystallization kinetics of high-grade X80 pipeline steel. Journal of Materials Research and Technology, 33, 2315-2330. https://doi.org/10.1016/j.jmrt.2024.09.217
[22] Eskandari, H., Reihanian, M., & Alavi Zaree, S. (2023). An analysis of efficiency parameter and its modifications utilized for development of processing maps. Iranian Journal of Materials Forming, 10(4), 45-51. https://doi.org/10.22099/ijmf.2024.49537.1283
[23] Niu, T., Kang, Y. l., Gu, H. W., Yin, Y. Q., Qiao, M. L., & Jiang, J. X. (2010). Effect of Nb on the dynamic recrystallization behavior of high-grade pipeline steels. International Journal of Minerals, Metallurgy, and Materials, 17(6), 742-747. https://doi.org/10.1007/s12613-010-0383-8
[24] Liu, H. L., Liu, C. J., & Jiang, M. F. (2010). Effects of rare earths on the austenite recrystallization behavior in X80 pipeline steel. Advanced Materials Research, 129-131, 542-546. https://doi.org/10.4028/www.scientific.net/AMR.129-131.542
[25] Wang, L., Ji, L., Yang, K., Gao, X., Chen, H., & Chi, Q. (2022). The flow stress–strain and dynamic recrystallization kinetics behavior of high-grade pipeline steels. Materials, 15(20), 7356. https://doi.org/10.3390/ma15207356
[26] Zhao, J., Hu, W., Wang, X., Kang, J., Cao, Y., Yuan, G., Di, H., & Misra, R. (2016). A Novel thermo-mechanical controlled processing for large-thickness microalloyed 560 MPa (X80) pipeline strip under ultra-fast cooling. Materials Science and Engineering: A, 673, 373-377. https://doi.org/10.1016/j.msea.2016.07.089
[27] Machado, F. R. d. S., Ferreira, J. C., Rodrigues, M. V. G., Lima, M. N. d. S., Loureiro, R. d. C. P., Siciliano, F., Silva, E. S., Reis, G. S., Sousa, R. C. d., & Aranas Jr, C. (2022). Dynamic ferrite formation and evolution above the Ae3 temperature during plate rolling simulation of an API X80 steel. Metals, 12(8), 1239. https://doi.org/10.3390/met12081239
[28] Ma, G., Chen, Y., Wu, G., Wang, S., Li, T., Liu, W., Wu, H., Gao, J., Zhao, H., & Zhang, C. (2023). The effects of microalloying on the precipitation behavior and strength mechanisms of X80 high-strength pipeline steel under different processes. Crystals, 13(5), 714. https://doi.org/10.3390/cryst13050714
[29] Silva, R. A., Pinto, A. L., Kuznetsov, A., & Bott, I. S. (2018). Precipitation and grain size effects on the tensile strain-hardening exponents of an API X80 steel pipe after high-frequency hot-induction bending. Metals, 8(3), 168. https://doi.org/10.3390/met8030168