Densification Behavior of Fused Silica: Effects of Particle Size, Compaction Pressure, Sintering Temperature/Time, and Boron Oxide Addition

Document Type : Research Paper

Authors

Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran

Abstract

This study systematically investigates the optimization of processing parameters for 400-mesh Chinese fused silica ceramics, focusing on milling, blending, and sintering strategies to achieve high-density components. Twenty-hour attrition milling with zirconia balls (40:1 ball-to-powder ratio) produces a homogeneous powder with an average particle size of ~ 5 µm, enhancing sinterability compared to unmilled powder. Excessive milling, however, reduces green density due to increased interparticle friction. A 70:30 blend of milled/unmilled powder provides an optimal balance between enhanced diffusion kinetics (from milled powder) and improved particle packing (from unmilled powder). This blend achieves 94% theoretical density after sintering at 1250 °C for 5 hours, while reducing milling energy by 30%. Prolonged sintering (> 5 h) promotes cristobalite formation, grain growth, and density reduction, underscoring the importance of precise thermal control.   B₂O₃ additions (0.5–3 wt.%) hinder densification by promoting premature crystallization and disrupting diffusion pathways, making it unsuitable as a sintering aid. SEM analysis confirms that the 70/30 blend yields uniform grains (1.5 ± 0.3 µm) with minimal porosity (< 6%), outperforming both fully milled and unmilled powders. These findings provide a practical framework for industrial production, emphasizing cost-effective blending and optimized sintering protocols to achieve high-performance fused silica ceramics.

Keywords


[1] Miao, X. G., Qu, Y. R., Ghezzo, F., Fang, X. W., Yue, Y. T., Zhao, Z. Y. & Liu, R. P. (2014). Fused silica ceramics and composites for radome applications. Advanced Materials Research. 90, 123–129. https://doi.org/10.4028/www.scientific.net/AMR.900.123
[2] Jia, D. C., Zhou, Y. & Lei, T. C. (2003). Ambient and elevated temperature mechanical properties of hot-pressed fused silica matrix composite. Journal of the European Ceramic Society, 23(5), 801-808. https://doi.org/10.1016/S0955-2219(02)00156-5
[3] Ganesh, I., & Mahajan, Y. R. (2020). Slip-cast fused silica radomes for hypervelocity vehicles: advantages, challenges, and fabrication techniques. In Handbook of Advanced Ceramics and Composites: Defense, Security, Aerospace and Energy Applications (pp. 251-317). Cham: Springer International Publishing.
[4] Skaupy, F., & Weissenberg, G. (1942). U.S. Patent No. 2,270,718. United States Patent and Trademark Office.
[5] Rabinovich, E.M. (1985). Review: Preparation of glass by sintering. Journal of Materials Science, 20, 4259-4297. https://doi.org/10.1007/BF00559317
[6] Wang, C. F., Liu, J. C., Guo, J. P., Song, D. & Lian, W. J. (2010). Properties of silica ceramic made from amorphous silica. Key Engineering Materials, 434, 838-839. https://doi.org/10.4028/www.scientific.net/KEM.434-435.838
[7] Xu, H., Liu, J. C., Du, H. Y., Guo, A. R. & Hou, Z. G. (2012). Preparation of porous silica ceramics with relatively high strength by a TBA-based gel-casting method. Chemical Engineering Journal, 183, 504-509. https://doi.org/10.1016/j.cej.2011.12.049
[8] Tomilov, G. M., Solomin, N. V., & Smirnova, T. V. (1978). Influence of atmosphere on sintering rate of vitreous SiO2. Inorganic Materials (English translation), 14(1), 145-146.
[9] Wan, W., Huang, Ch., Yang, J., Zeng J. & Qiu, T. (2014). Effect of sintering temperature on the properties of fused silica ceramics prepared by gelcasting. Journal of Electronic Materials Volume 43, 2566–2572, https://doi.org/10.1007/s11664-014-3112-7
[10] Budnikov P. P. & Pivindkii, Yu. E. (1967). Quartz ceramics. Russian Chemical Reviews, 36(3), 210–227, https://doi.org/10.1070/RC1967v036n03ABEH001599
[11] Popil'skii, R. Y., Adushkin, L. E., Pivinskii, Y. E., & Borodai, F. Y. (1971). Study of some properties of quartz ceramics in a wide temperature range. Refractories (English translation), 12(3), 253-258.
[12] Vasilos, T. (1960). Hot pressing of fused silica. Journal of the American Ceramic Society, 43(10), 517-519.
[13] Fleming, J. D. (1961). Slip casting of fused silica. American Ceramic Society Bulletin, 40(12), 748-750.
[14] Shahani, A. R., Tavakoli, S. M. H., Khosravi, M. (2004). Fracture toughness evaluation of slip-cast fused silica via the single edge V-notched beam method. Engineering Fracture Mechanics, 312, 110612. https://doi.org/10.1016/j.engfracmech.2024.110612
[15] Dai, Y., Yin, Y., Xu, X., Jin, S., Li, Y., & Harmuth, H. (2018). Effect of the phase transformation on fracture behaviour of fused silica refractories. Journal of the European Ceramic Society, 38(16), 5601-5609. https://doi.org/10.1016/j.jeurceramsoc.2018.08.040
[16] Mazurin, O. V., Streltsina, M. V., & Shvaiko-Shvaikovskaya, T. P. (1983). Handbook of glass data. Part A. Silica glass and binary silicate glasses. Elsevier, Amsterdam.
[17] ] Dehghani, P. & Soleimani, F. (2022). Effects of sintering temperature and cristobalite content on the bending strength of spark plasma sintered fused silica ceramics. Ceramics International, 48(12), 16800-16807, https://doi.org/10.1016/j.ceramint.2022.02.230
[18] Dehghani, P. & Soleimani, F. (2021). Effect of cristobalite content on physical, dielectric constant, and bending strength of fused silica ceramics formed by slip casting method. Advanced Ceramics Progress, 7(2), 16–22. https://doi.org/10.30501/ACP.2021.286931.1060
[19] Hu Y., Wang, Z. & Lu, J. (2008). Study on the gel casting of fused silica glass. Journal of Non-Crystalline Solids, 354(12–13), 1285–1289. https://doi.org/10.1016/j.jnoncrysol.2007.01.109
[20] Li, L., Fang Y., Xiao, Q., Wu, Y. J., Wang, N., Chen, X. M. (2014). Microwave dielectric properties of fused silica prepared by different approaches. International Journal of Applied Ceramic Technology. 11(1), 193–199. https://doi.org/10.1111/j.1744-7402.2012.02846.x
[21] Barazani, B., & Torikai, D. (2016). Spark plasma sintering of silica glass: experimental study on the temperature distribution and the influence of the heating rate on bubble formation. Glass Technology: European Journal of Glass Science and Technology Part A, 57(3), 89–94. https://doi.org/10.13036/17533546.57.3.022
[22] Abbas, N., Luqman, M., Rauf, A., Shuaib, M., Haroon, H., Shah, S. K. & Saleem, M. (2022). Effect of boron oxide addition on microstructure and mechanical properties of slip cast fused silica. Materials Science Forum, 1067, 227-231. https://doi.org/10.4028/p-9qvnzg
[23] Li, J., Li, Y., Li, Sh. and Xiang, K. (2024). Effect of BPO4-B2O3 composite additive on crystallization and sintering of silica ceramics. Transactions of the Indian Ceramic Society, 83(1), 29-34. https://doi.org/10.1080/0371750X.2023.2282466
[24] Rahaman, M. N. (2017). Ceramic processing and sintering (2nd ed.). CRC press.