[1] Villalobos, J. C., Del-Pozo, A., Campillo, B., Mayen, J., & Serna, S. (2018). Microalloyed steels through history until 2018: Review of chemical composition, processing and hydrogen service.
Metals,
8(5), 351.
https://doi.org/10.3390/met8050351
[5] Masoumi, M., Herculano, L. F. G., & de Abreu, H. F. G. (2015). Study of texture and microstructure evaluation of steel API 5L X70 under various thermomechanical cycles.
Materials Science and Engineering: A,
639, 550-558.
https://doi.org/10.1016/j.msea.2015.05.020
[6] Nafisi, S., Arafin, M., Collins, L., & Szpunar, J. (2012). Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles.
Materials Science and Engineering: A,
531, 2-11.
https://doi.org/10.1016/j.msea.2011.09.072
[7] Zidelmel, S., Rayane, K., & Kaouka, A. (2024). Effects of thermo-mechanical parameters on microstructural and mechanical properties of API X70 steel.
JOM, 76, 3354-3361.
https://doi.org/10.1007/s11837-023-06333-0
[8] Al Shahrani, A., Yazdipour, N., Dehghan-Manshadi, A., Gazder, A. A., Cayron, C., & Pereloma, E. V. (2013). The effect of processing parameters on the dynamic recrystallisation behaviour of API-X70 pipeline steel.
Materials Science and Engineering: A,
570, 70-81.
https://doi.org/10.1016/j.msea.2013.01.066
[9] Mirzakhani, B., Salehi, M. T., Khoddam, S., Seyedein, S. H., & Aboutalebi, M. R. (2009). Investigation of dynamic and static recrystallization behavior during thermomechanical processing in a API-X70 microalloyed steel.
Journal of Materials Engineering and Performance,
18, 1029-1034.
https://doi.org/10.1007/s11665-008-9338-x
[12] Eskandari, H., Reihanian, M., & Alavi Zaree, S. (2023). An Analysis of Efficiency Parameter and its Modifications Utilized for Development of Processing Maps.
Iranian Journal of Materials Forming,
10(4), 45-51.
https://doi.org/10.22099/ijmf.2024.49537.1283
[13] Prasad, Y. V. R. K., Gegel, H. L., Doraivelu, S. M., Malas, J. C., Morgan, J. T., Lark, K. A., & Barker, D. R. (1984). Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242.
Metallurgical Transactions A,
15(10), 1883-1892.
https://doi.org/10.1007/BF02664902
[14] Zhou, G., Ding, H., Cao, F., & Zhang, B. (2014). A comparative study of various flow instability criteria in processing map of superalloy GH4742.
Journal of Materials Science & Technology,
30(3), 217-222.
https://doi.org/10.1016/j.jmst.2013.07.008
[16] Murty, S. V. S. N., & Rao, B. N. (1998). On the development of instability criteria during hotworking with reference to IN 718.
Materials Science and Engineering: A,
254(1), 76-82.
https://doi.org/10.1016/S0921-5093(98)00764-3
[19] Chai, R. X., Zhang, C. W., Guo, W., & Zhang, F. (2017). Hot deformation behavior and processing map of 40MnBH alloy steel.
Steel Research International,
88(5), 1600281.
https://doi.org/10.1002/srin.201600281
[21] Mirzadeh, H., Parsa, M., & Ohadi, D. (2013). Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size.
Materials Science and Engineering: A,
569, 54-60.
https://doi.org/10.1016/j.msea.2013.01.050
[22] Eskandari, H., Reihanian, M., & Zaree, S. A. (2024). Constitutive modeling, processing map optimization, and recrystallization kinetics of high-grade X80 pipeline steel.
Journal of Materials Research and Technology,
33, 2315-2330.
https://doi.org/10.1016/j.jmrt.2024.09.217
[25] Mirzadeh, H., Cabrera, J., Prado, J., & Najafizadeh, A. (2011). Hot deformation behavior of a medium carbon microalloyed steel.
Materials Science and Engineering: A,
528(10-11), 3876-3882.
https://doi.org/10.1016/j.msea.2011.01.098
[27] Menapace, C., Sartori, N., Pellizzari, M., & Straffelini, G. (2018). Hot deformation behavior of four steels: a comparative study.
Journal of Engineering Materials and Technology,
140(2), 021006.
https://doi.org/10.1115/1.4038670