Hot Deformation Behavior of an API X70 Steel: A Processing Map Approach

Document Type : Research Paper

Authors

Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

This study investigates the hot deformation behavior of an API X70 microalloyed steel using a processing map approach. Cylindrical specimens were subjected to compression tests at temperatures ranging from 950 to 1100 °C and strain rates from 0.001 to 1 s⁻¹. Flow curves revealed typical features of work hardening, dynamic recovery, and dynamic recrystallization. Power dissipation efficiency and instability criteria were calculated using a dynamic material model to construct processing maps at various strain levels. The maps identified three optimal hot deformation regions at higher strains, with the most favorable zone (efficiency of 25–33%) located at 1075–1100 °C and 0.001–0.005 s⁻¹. Microstructural validation confirmed these safe zones, while unstable regions were characterized by crack formation and deformation bands. A constitutive analysis yielded an apparent activation energy for hot deformation of 572.5 kJ/mol. The findings provide valuable guidance for optimizing hot working conditions of API X70 steel.

Keywords


[1] Villalobos, J. C., Del-Pozo, A., Campillo, B., Mayen, J., & Serna, S. (2018). Microalloyed steels through history until 2018: Review of chemical composition, processing and hydrogen service. Metals, 8(5), 351. https://doi.org/10.3390/met8050351
[2] Vervynckt, S., Verbeken, K., Lopez, B., & Jonas, J. (2012). Modern HSLA steels and role of non-recrystallisation temperature. International Materials Reviews, 57(4), 187-207. https://doi.org/10.1179/1743280411Y.0000000013
[3] Baker, T. N. (2016). Microalloyed steels. Ironmaking & Steelmaking, 43(4), 264-307. https://doi.org/10.1179/1743281215Y.0000000063
[4] e Silva, A. C. (2020). Challenges and opportunities in thermodynamic and kinetic modeling microalloyed HSLA steels using computational thermodynamics. Calphad, 68, 101720. https://doi.org/10.1016/j.calphad.2019.101720
[5] Masoumi, M., Herculano, L. F. G., & de Abreu, H. F. G. (2015). Study of texture and microstructure evaluation of steel API 5L X70 under various thermomechanical cycles. Materials Science and Engineering: A, 639, 550-558. https://doi.org/10.1016/j.msea.2015.05.020
[6] Nafisi, S., Arafin, M., Collins, L., & Szpunar, J. (2012). Texture and mechanical properties of API X100 steel manufactured under various thermomechanical cycles. Materials Science and Engineering: A, 531, 2-11. https://doi.org/10.1016/j.msea.2011.09.072
[7] Zidelmel, S., Rayane, K., & Kaouka, A. (2024). Effects of thermo-mechanical parameters on microstructural and mechanical properties of API X70 steel. JOM, 76, 3354-3361. https://doi.org/10.1007/s11837-023-06333-0
[8] Al Shahrani, A., Yazdipour, N., Dehghan-Manshadi, A., Gazder, A. A., Cayron, C., & Pereloma, E. V. (2013). The effect of processing parameters on the dynamic recrystallisation behaviour of API-X70 pipeline steel. Materials Science and Engineering: A, 570, 70-81. https://doi.org/10.1016/j.msea.2013.01.066
[9] Mirzakhani, B., Salehi, M. T., Khoddam, S., Seyedein, S. H., & Aboutalebi, M. R. (2009). Investigation of dynamic and static recrystallization behavior during thermomechanical processing in a API-X70 microalloyed steel. Journal of Materials Engineering and Performance, 18, 1029-1034. https://doi.org/10.1007/s11665-008-9338-x
[10] Prasad, Y. V. R. K. (2003). Processing maps: A status report. Journal of Materials Engineering and Performance, 12(6), 638-645. https://doi.org/10.1361/105994903322692420
[11] Prasad, Y. V. R. K., & Seshacharyulu, T. (1998). Modelling of hot deformation for microstructural control. International Materials Reviews, 43(6), 243-258. https://doi.org/10.1179/imr.1998.43.6.243
[12] Eskandari, H., Reihanian, M., & Alavi Zaree, S. (2023). An Analysis of Efficiency Parameter and its Modifications Utilized for Development of Processing Maps. Iranian Journal of Materials Forming, 10(4), 45-51. https://doi.org/10.22099/ijmf.2024.49537.1283
[13] Prasad, Y. V. R. K., Gegel, H. L., Doraivelu, S. M., Malas, J. C., Morgan, J. T., Lark, K. A., & Barker, D. R. (1984). Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metallurgical Transactions A, 15(10), 1883-1892. https://doi.org/10.1007/BF02664902
[14] Zhou, G., Ding, H., Cao, F., & Zhang, B. (2014). A comparative study of various flow instability criteria in processing map of superalloy GH4742. Journal of Materials Science & Technology, 30(3), 217-222. https://doi.org/10.1016/j.jmst.2013.07.008
[15] Ebrahimi, R., & Najafizadeh, A. (2004). Optimization of hot workability in Ti-IF steel by using the processing map. International Journal of ISSI, 1(1), 1-7. https://journal.issiran.com/article_4653.html
[16] Murty, S. V. S. N., & Rao, B. N. (1998). On the development of instability criteria during hotworking with reference to IN 718. Materials Science and Engineering: A, 254(1), 76-82. https://doi.org/10.1016/S0921-5093(98)00764-3
[17] Sellars, C. M., & McTegart, W. J. (1966). On the mechanism of hot deformation. Acta Metallurgica, 14(9), 1136-1138. https://doi.org/10.1016/0001-6160(66)90207-0
[18] Sakai, T., & Jonas, J. J. (1984). Overview no. 35 dynamic recrystallization: mechanical and microstructural considerations. Acta metallurgica, 32(2), 189-209. https://doi.org/10.1016/0001-6160(84)90049-X
[19] Chai, R. X., Zhang, C. W., Guo, W., & Zhang, F. (2017). Hot deformation behavior and processing map of 40MnBH alloy steel. Steel Research International, 88(5), 1600281. https://doi.org/10.1002/srin.201600281
[20] Poliak, E. I. (2020). Dynamic recrystallization control in hot rolling. Procedia Manufacturing, 50, 362-367. https://doi.org/10.1016/j.promfg.2020.08.067
[21] Mirzadeh, H., Parsa, M., & Ohadi, D. (2013). Hot deformation behavior of austenitic stainless steel for a wide range of initial grain size. Materials Science and Engineering: A, 569, 54-60. https://doi.org/10.1016/j.msea.2013.01.050
[22] Eskandari, H., Reihanian, M., & Zaree, S. A. (2024). Constitutive modeling, processing map optimization, and recrystallization kinetics of high-grade X80 pipeline steel. Journal of Materials Research and Technology, 33, 2315-2330. https://doi.org/10.1016/j.jmrt.2024.09.217
[23] Xu, Y., Tang, D., Song, Y., & Pan, X. (2012). Dynamic recrystallization kinetics model of X70 pipeline steel. Materials & Design, 39, 168-174. https://doi.org/10.1016/j.matdes.2012.02.034
[24] Rakhshkhorshid, M., & Hashemi, S. (2013). Experimental study of hot deformation behavior in API X65 steel. Materials Science and Engineering: A, 573, 37-44. https://doi.org/10.1016/j.msea.2013.02.045
[25] Mirzadeh, H., Cabrera, J., Prado, J., & Najafizadeh, A. (2011). Hot deformation behavior of a medium carbon microalloyed steel. Materials Science and Engineering: A, 528(10-11), 3876-3882. https://doi.org/10.1016/j.msea.2011.01.098
[26] Mirzadeh, H., Cabrera, J. M., & Najafizadeh, A. (2011). Constitutive relationships for hot deformation of austenite. Acta Materialia, 59(16), 6441-6448. https://doi.org/10.1016/j.actamat.2011.07.008
[27] Menapace, C., Sartori, N., Pellizzari, M., & Straffelini, G. (2018). Hot deformation behavior of four steels: a comparative study. Journal of Engineering Materials and Technology, 140(2), 021006. https://doi.org/10.1115/1.4038670