Effect of Polymeric Additives on the Rheological Behavior of PZT Pastes for Extrusion Fiber Processing: Optimization by Taguchi Method

Document Type : Research Paper

Authors

1 Department of Materials Engineering, Faculty of Engineering, Yasouj University, Yasouj, Iran

2 School of Metallurgy and Materials Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran

Abstract

This study investigates the rheological behavior and microstructural characteristics of Pb(Zr,Ti)O (PZT) fibers fabricated via extrusion. Using commercial soft PZT powder, polymeric additives, and an organic solvent, paste formulations were optimized through a Taguchi experimental design. The optimal composition, 5 wt.% PVB, 0.5 wt.% DBF, 0.8 wt.% SA, and 70 wt.% solid loading, achieved a viscosity of 15548 mPa·s, enabling stable extrusion. Increasing the DBF content to 2.5 wt.%, further enhanced flowability, reducing the required force and yielding a microstructure with significantly reduced surface porosity—from approximately 25% to 5.5%. After sintering at 1250 °C for 2 hours, the fibers exhibited a crack-free, homogeneous microstructure with uniformly distributed grains, as confirmed by SEM and EDAX analyses.
These findings demonstrate that precise control of paste formulation and processing parameters enables the production of high-quality PZT fibers suitable for piezoelectric applications, highlighting the industrial potential of the proposed method.

Keywords


[1] Vaiani, L., Boccaccio, A., Uva, A. E., Palumbo, G., Piccininni, A., Guglielmi, P., Cantore, S., Santacroce, L., Charitos, I. A., Ballini, A. (2023). Ceramic materials for biomedical applications: An overview on properties and fabrication processes. Journal of Functional Biomaterials, 14(3), 146. https://doi.org/10.3390/jfb14030146
[2] Otitoju, T. A., Okoye, P. U., Chen, G., Li, Y., Okoye, M. O., & Li, S. (2020). Advanced ceramic components: Materials, fabrication, and applications. Journal of Industrial and Engineering Chemistry, 85, 34–65. https://doi.org/10.1016/j.jiec.2020.02.002
[3] Li, Z., Thong, H. C., Zhang, Y. F., Xu, Z., Zhou, Z., Liu, Y. X., Cheng, Y. Y., Wang, S.H., Zhao, C., Chen, F., & Bi, K. (2021). Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency. Advanced Functional Materials, 31(15), 2005012. https://doi.org/10.1002/adfm.202005012
[4] Rao, R. G. S., & Kanagathara, N. (2015). Lead zirconate titanate: A piezoelectric material. Journal of Chemical and Pharmaceutical Research, 7(5), 921–923. https://doi.org/10.1016/J.NANOEN.2012.09.001
[5] Pan, D. (2024). Lead zirconate titanate (PZT) piezoelectric ceramics: Applications and prospects in human motion monitoring. Ceramics-Silikáty, 68(3), 444–458. https://doi.org/10.13168/cs.2024.0044
[6] Qiu, J., Tani, J., Yanada, N., Kobayashi, Y., & Takahashi, H. (2004). Fabrication of Pb(Nb,Ni)O₃–Pb(Zr,Ti)O₃ piezoelectric ceramic fibers by extrusion of a sol-powder mixture. Journal of Intelligent Material Systems and Structures, 15(9–10), 643–653. https://doi.org/10.1177/1045389x04043949
[7] Heiber, J., Clemens, F. J., Graule, T., & Hülsenberg, D. (2006). Influence of fibre diameter on the microstructure and the piezoelectric properties of PZT-fibres. Advances in Science and Technology, 45, 2459–2463. https://doi.org/10.4028/www.scientific.net/AST.45.2459
[8] Guan, X., Chen, H., Xia, H., Fu, Y., Yao, J., & Ni, Q. Q. (2020). Flexible energy harvester based on aligned PZT/SMPU nanofibers and shape memory effect for curved sensors. Composites Part B: Engineering, 197, 108169. https://doi.org/10.1016/j.compositesb.2020.108169
[9] Guillot, F. M., Beckham, H. W., & Leisen, J. (2013). Hollow piezoelectric ceramic fibers for energy harvesting fabrics. Journal of Engineered Fibers and Fabrics, 8(1), 155892501300800109. https://doi.org/10.1177/155892501300800109
[10] Meyer, R. J., Yoshikawa, S., & Shrout, T. R. (1996). Sol-gel-derived PZT fibers: Development and limitations. In Smart Structures and Materials 1996: Smart Materials Technologies and Biomimetics (Vol. 2716, pp. 69–79). SPIE. https://doi.org/10.1117/12.232126
[11] Yoshikawa, S., Selvaraj, U., Moses, P., Withams, J., Meyer, R., & Shrout, T. (1995). Pb(Zr,Ti)O₃ [PZT] fibers—Fabrication and measurement methods. Journal of Intelligent Material Systems and Structures, 6(2), 152–158. https://doi.org/10.1177/1045389X9500600202
[12] Ismael, M. R., Clemens, F., Wyss, P., Graule, T., & Hoffmann, M. J. (2012). Processing and properties of co‐extruded lead zirconate titanate fibers. Journal of the American Ceramic Society, 95(1), 108–116. https://doi.org/10.1111/j.1551-2916.2011.04851.x
[13] Strock, H. B., Pascucci, M. R., Parish, M. V., Bent, A. A., & Shrout, T. R. (1999). Active PZT fibers: A commercial production process. In Smart Structures and Materials 1999: Smart Materials Technologies (Vol. 3675, pp. 22–31). SPIE. https://doi.org/10.1117/12.352799
[14] Ebru, M. A., Dagdeviren, C., & Papila, M. (2009). Pb(Zr,Ti)O₃ nanofibers produced by electrospinning process. MRS Online Proceedings Library, 1129, 708. https://doi.org/10.1557/PROC-1129-V07-08
[15] Heiber, J., Clemens, F., Graule, T., & Hülsenberg, D. (2006). Influence of fibre diameter on the microstructure and the piezoelectric properties of PZT-fibres. Advances in Science and Technology, 45, 2459–2463. https://doi.org/10.4028/www.scientific.net/AST.45.2459
[16] Qiu, J., Tani, J., Kobayashi, Y., Um, T. Y., & Takahashi, H. (2003). Fabrication of piezoelectric ceramic fibers by extrusion of Pb(Zr,Ti)O₃ powder and Pb(Zr,Ti)O₃ sol mixture. Smart Materials and Structures, 12(3), 331–337. https://doi.org/10.1088/0964-1726/12/3/303
[17] Mensur Alkoy, E., Dagdeviren, C., & Papila, M. (2009). Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3–3 PZT/polymer composite. Journal of the American Ceramic Society92(11), 2566-2570. https://doi.org/10.1111/j.1551-2916.2009.03261.x
[18] Yi, C. H., Lin, C.-H., Wang, Y. H., Cheng, S. Y., & Chang, H. Y. (2012). Fabrication and characterization of flexible PZT fiber and composite. Ferroelectrics, 434(1), 91–99. https://doi.org/10.1080/00150193.2012.732513
[19] Hayati, R., Fereydoonpoor, I., & Fadaei, R. (2023). Investigating the effects of sintering variables on microstructure and density of PZT fibers fabricated via extrusion process. Advanced Materials & Technologies, 12(2), 55–73. https://doi.org/10.30501/jamt.2023.411504.1287
[20] Cho, K. H., & Priya, S. (2011). Synthesis of ferroelectric PZT fibers using sol–gel technique. Materials Letters, 65(4), 775–779. https://doi.org/10.1016/j.matlet.2010.11.070
[21] Heiber, J., Belloli, A., Ermanni, P., & Clemens, F. (2009). Ferroelectric characterization of single PZT fibers. Journal of Intelligent Material Systems and Structures, 20(4), 379–385. https://doi.org/10.1177/1045389X08094365
[22] Rahsepar, H., Hayati, R., & Javadpour, S. (2024). Evaluation of the dielectric, and piezoelectric properties and optimizing the figure of merit of the 0–3 KNN-0.8ZnO/PVDF-HFP piezoelectric composite by the Taguchi method. Journal of Alloys and Compounds, 1006, 176373. https://doi.org/10.1016/j.jallcom.2024.176373
[23] Jia, X. (2023). The optimization of extrusion process parameters utilizing the Taguchi method. International Journal of Frontiers in Engineering Technology, 6, 109–114. https://doi.org/10.25236/IJFET.2024.060418
[24] Chen, D. C., Chen, D. F., & Huang, S. M. (2024). Applying the Taguchi method to improve key parameters of extrusion vacuum-forming quality. Polymers, 16(8), 1113. https://doi.org/10.3390/polym16081113
[25] Kozielski, L., Clemens, F., Lusiola, T., & Pilch, M. (2016). Uniaxial extrusion as an enhancement method of piezoelectric properties of ceramic micro fibers. Journal of Alloys and Compounds, 687, 604–610. https://doi.org/10.1016/j.jallcom.2016.06.050
[26] Kumar, D., & Kumar, S. (2015). Process parameters optimization for HDPE material in extrusion blown film machinery using Taguchi method. IOSR Journal of Mechanical and Civil Engineering, 12(4), 1–3. https://doi.org/10.9790/1684-12450103
[27] Athreya, S., & Venkatesh, Y. (2012). Application of Taguchi method for optimization of process parameters in improving the surface roughness of lathe facing operation. International Refereed Journal of Engineering and Science, 1(3), 13–19.
[28] Box, G. E. P. (1988). Signal-to-noise ratios, performance criteria, and transformations. Technometrics, 30(1), 1–17. https://doi.org/10.2307/1270311
[29] Rathi, M. G., & Jakhade, N. A. (2014). An optimization of forging process parameter by using Taguchi method: An industrial case study. International Journal of Scientific and Research Publications, 4(6), 590–596.
[30] Janusas, G., Guobiene, A., Palevicius, A., Brunius, A., Cekas, E., Baltrusaitis, V., & Sakalys, R. (2017). Influence of binding material of PZT coating on microresonator's electrical and mechanical properties. In Smart Sensors, Actuators, and MEMS VIII (Vol. 10246, pp. 342–348). SPIE. https://doi.org/10.1117/12.2265978
[31] Wu, D., Qin, S., Liu, C.-L., Fang, B.-J., Cao, Z., & Cheng, J.-F. (2019). Surface modification by stearic acid on property of PLZT piezoelectric ceramics prepared via powder injection molding. Journal of Inorganic Materials, 34(5), 535–540. http://doi.org/10.15541/jim20180323
[32] Jarray, A., Gerbaud, V., & Hemati, M. (2016). Stearic acid crystals stabilization in aqueous polymeric dispersions. Chemical Engineering Research and Design, 110, 220–232. https://doi.org/10.1016/j.cherd.2016.02.028
[33] Nie, J., Li, M., Liu, W., Li, W., & Xing, Z. (2021). The role of plasticizer in optimizing the rheological behavior of ceramic pastes intended for stereolithography-based additive manufacturing. Journal of the European Ceramic Society, 41(1), 646–654. https://doi.org/10.1016/j.jeurceramsoc.2020.08.013
[34] Rasteiro, M., & Salgueiros, I. (2005). Rheology of particulate suspensions in ceramic industry. Particulate Science and Technology, 23(2), 145–157. https://doi.org/10.1080/02726350590922206
[35] De La Rosa, Á., Ruiz, G., Castillo, E., & Moreno, R. (2021). Calculation of dynamic viscosity in concentrated cementitious suspensions: Probabilistic approximation and Bayesian analysis. Materials, 14(8), 1971. https://doi.org/10.3390/ma14081971
[36] Youness, D., Yahia, A., & Tagnit-Hamou, A. (2022). Development of viscosity models of concentrated suspensions: Contribution of particle-size and shape indices. Construction and Building Materials, 346, 128335. https://doi.org/10.1016/j.conbuildmat.2022.128335
[37] Yue, Y., Ren, J., Yang, K., Wang, D., Qian, J., & Bai, Y. (2022). Investigation and optimisation of the rheological properties of magnesium potassium phosphate cement with response surface methodology. Materials, 15(19), 6815. https://doi.org/10.3390/ma15196815
[38] Dulina, I., Umerova, S., & Ragulya, A. (2015). Plasticizer effect on rheological behaviour of screen printing pastes based on barium titanate nanopowder. Journal of Physics: Conference Series, 602, 012035. https://doi.org/10.1088/1742-6596/602/1/012035
[39] Halbleib, L. L., Yang, P., Mondy, L. A., & Burns, G. R. (2005). The effects of process parameters on injection-molded PZT ceramics part fabrication—Compounding process rheology. Sandia National Laboratories Technical Report, SAND2005-2864. https://doi.org/10.2172/923077
[40] Waxman, R., Erturun, U., & Mossi, K. (2010). Feasibility of using piezoelectric probes to measure viscosity in Newtonian fluids. In Smart Materials, Adaptive Structures and Intelligent Systems (pp. 47–52). ASME. https://doi.org/10.1115/SMASIS2010-3688
[41] Restasari, A., Abdillah, L. H., Ardianingsih, R., Sitompul, H. R. D., Budi, R. S., Hartaya, K., & Wibowo, H. B. (2021). Thixotropic behavior in defining particle packing density of highly filled AP/HTPB-based propellant. Symmetry, 13(10), 1767. https://doi.org/10.3390/sym13101767
[42] Powell, J., Assabumrungrat, S., & Blackburn, S. (2013). Design of ceramic paste formulations for co-extrusion. Powder Technology, 245, 21–27. https://doi.org/10.1016/j.powtec.2013.04.017
[43] Bowen, C. R., Stevens, R., Nelson, L. J., Dent, A. C., Dolman, G., Su, B., Button, T. W., Cain, M. G., & Stewart, M. (2006). Manufacture and characterization of high activity piezoelectric fibres. Smart Materials and Structures, 15(2), 295–301. https://doi.org/10.1088/0964-1726/15/2/008
[44] Heiber, J., Clemens, F. J., Graule, T., & Hülsenberg, D. (2008). Influence of varying the powder loading content on the homogeneity and properties of extruded PZT-fibers. Key Engineering Materials, 368, 11–14. https://doi.org/10.4028/www.scientific.net/KEM.368-372.11
[45] Rashid, T. N. I. T. A., Ahmad, Z. A., & Mohamad, H. (2021). Influence of sintering parameters on structural, dielectric and piezoelectric properties of Ca, La and Sr-doped PZT (PCLSZT) electroceramics. Journal of Materials Science: Materials in Electronics, 32, 18095–18107. https://doi.org/10.1007/s10854-021-06354-y