A Comprehensive Study on the Effect of Wire EDM Current Intensity on the Tribological Behavior and Energy Efficiency in Aluminum Machining: A Novel Approach Toward Sustainable Manufacturing

Document Type : Research Paper

Authors

1 School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 Faculty of Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

3 Department of Engineering, Islamic Azad University, Mashhad, Iran

Abstract

This study investigates the influence of discharge current variations in the wire electrical discharge machining (WEDM) process on the surface properties and tribological behavior of aluminum components. Five aluminum samples were machined at current levels ranging from 1 to 5 amperes, and their surface roughness, microhardness, wear resistance, and corrosion rate were evaluated. Additionally, the energy consumption per unit volume of material removed was calculated. The results showed that as the current increased from 1 to 5 A, surface roughness initially rose from 1.8 µm for the reference sample to a maximum of 3.5 µm, then decreased to 2.5 µm at the highest current. Surface microhardness increased from 49.8 HV in the reference sample to a maximum of 57 HV. Wear and corrosion rates, key indicators of surface performance, were 9.2 mg and 0.008 mm/year under optimal conditions, compared to 18.4 mg and 0.001 mm/year in the reference sample. Furthermore, specific energy consumption initially decreased but then increased at higher currents due to unstable sparks and re-melting effects. These findings provide valuable insights for optimizing electrical parameters in WEDM parameters to improve the performance and sustainability of machined aluminum components.

Keywords


[1] Chandel, R., Sharma, N., & Bansal, S. A. (2021). A review on recent developments of aluminum-based hybrid composites for automotive applications. Emergent Materials, 4(5), 1243–1257. https://doi.org/10.1007/s42247-021-00186-6
[2] Lakshmanan, K., Pandian, P., Sivaprakasam, R., & Sundaram, K. (2025). Studies on progress of aluminum-based composites for automotive applications and its damping characteristics – A review. Mechanics of Advanced Composite Structures, 12(1), 25–42. https://doi.org/10.22075/macs.2024.32547.1589
[3] Sharma, S. K., Gajević, S., Sharma, L. K., Pradhan, R., Sharma, Y., Miletić, I., & Stojanović, B. (2024). Progress in aluminum-based composites prepared by stir casting: Mechanical and tribological properties for automotive, aerospace, and military applications. Lubricants, 12(12), 421. https://doi.org/10.3390/lubricants12120421
[4] Hickman, A. L., Chaudhuri, R., Bader, S. J., Nomoto, K., Li, L., Hwang, J. C., Xing, H. G., & Jena, D. (2021). Next generation electronics on the ultrawide-bandgap aluminum nitride platform. Semiconductor Science and Technology, 36(4), 044001. https://doi.org/10.1088/1361-6641/abe5fd
[5] Dutta, K., Duarah, R., Purbey, R., Jayaramudu, J., & Das, M. R. (2025). Development of biodegradable high-alumina clay-modified poly (butylene adipate-co-terephthalate) composites for sustainable packaging applications. Journal of Applied Polymer Science, e56680. https://doi.org/10.1002/app.56680
[6] Xuepeng, W. A., Zhen, L. I., Xueli, Q. I., & Haonan, X. U. (2024). Preparation methods and research progress of continuous alumina fibers. Journal of Ceramics, 45(6), 1125–1135. https://doi.org/10.13957/j.cnki.tcxb.2024.06.005
[7] Arunraja, K. M., Muthugounder, P., Karthikeyan, S., Ganesan, S., Gowrishankar, A., & Muruganandhan, B. P. (2025, June). Influences of jute fiber and alumina nanoparticles on behaviour of polyester composite synthesized via hand layup route. In AIP Conference Proceedings (Vol. 3267, No. 1, p. 020290). AIP Publishing LLC. https://doi.org/10.1063/5.0264673
[8] Rogachev, S. O., Naumova, E. A., Karelin, R. D., Andreev, V. A., Perkas, M. M., Yusupov, V. S., & Khatkevich, V. M. (2021). Structure and mechanical properties of Al–Ca–Mn–Fe–Zr–Sc eutectic aluminum alloy after warm equal channel angular pressing. Russian Journal of Non-Ferrous Metals, 62, 293–301. https://doi.org/10.3103/s1067821221030123
[9] Samuel, A. U., Araoyinbo, A. O., Elewa, R. R., & Biodun, M. B. (2021). Effect of machining of aluminium alloys with emphasis on aluminium 6061 alloy – A review. In IOP Conference Series: Materials Science and Engineering (Vol. 1107, No. 1, p. 012157). IOP Publishing. https://doi.org/10.1088/1757-899x/1107/1/012157
[10] Santos, D. B. P., Maia, L. H. A., Martins, P. S., Ba, E. C. T., Vieira, V. F., Shigaki, Y., Fernandes, G. H. N., & Santos, S. C. (2025). Dynamic and dimensional evaluation of robot applications in the drilling process in Al–Mg–Si 6351 T6 aluminum alloy. The International Journal of Advanced Manufacturing Technology, 1–25. https://doi.org/10.1007/s00170-025-15054-4
[11] Sable, Y. S., Dharmadhikari, H. M., More, S. A., & Sarris, I. E. (2025). Exploring artificial neural network techniques for modeling surface roughness in wire electrical discharge machining of aluminum/silicon carbide composites. Journal of Composites Science, 9(6), 259. https://doi.org/10.3390/jcs9060259
[12] Kulandaiyappan, N. K., Stanislaus Arputharaj, B., Rajendran, P., Raja, V., & Karuppasamy, A. (2025). Development of statistical and soft computing regression models for WEDM machining of aluminum composites. International Journal on Interactive Design and Manufacturing (IJIDeM), 19(5), 3707–3723. https://doi.org/10.1007/s12008-024-02017-4
[13] Mahdieh, M. S., Nazari, F., Ahmed Mussa, T., & Torfy Salehi, H. (2023). A study on stamping of airliner’s tail connector part through FEM simulation. Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering, 15(3), 5–13. https://doi.org/10.71939/jsme.2023.1092088
[14] Mahdieh, M. S. (2023). Improving surface integrity of electrical discharge machined ultra-fined grain Al-2017 by applying RC-type generator. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. https://doi.org/10.1177/09544089231202329
[15] Uday Kiran Kandala, A. V., Solomon, D. G., & Arulraj, J. J. (2022). Advantages of Taguchi method compared to response surface methodology for achieving the best surface finish in wire electrical discharge machining (WEDM). Journal of Mechanical Engineering (JMechE), 19(1), 185–200. https://doi.org/10.24191/jmeche.v19i1.19696
[16] Ali, M. A., Mufti, N. A., Sana, M., Tlija, M., & Khan, A. M. (2025). An intrinsic investigation on high-speed wire-EDM for surface integrity, kerf width, and cutting performance of hybrid composite. Materials Today Communications, 42, 111548. https://doi.org/10.1016/j.mtcomm.2025.111548
[17] Mussada, E. K., Hua, C. C., & Rao, A. P. (2025). Surface and subsurface hardenability of AA6061-T6 aerospace alloy machined by WEDM. Aircraft Engineering and Aerospace Technology, 97(5), 542–548. https://doi.org/10.1108/aeat-04-2024-0091
[18] Dhoria, S. H., Subbaiah, K. V., Rao, V., Thulasiram, R., Bhowmik, A., & Santhosh, A. J. (2025). Experimental investigation of wire EDM on squeeze cast Al6351/Gr/SiC hybrid metal matrix composites: A Taguchi–GRA-based optimization framework. AIP Advances, 15(4). https://doi.org/10.1063/5.0267581 
[19] Chen, S. T., & Huang, L. W. (2022). A micro-energy W-EDM power source based on high-frequency spark erosion for making diamond heat-sink arrays. International Journal of Precision Engineering and Manufacturing-Green Technology, 9(5), 1267–1283. https://doi.org/10.1007/s40684-021-00396-7 
[20] Solomon, J. M., Selvakumar, G., Kumar, S. S., & Narayanasamy, P. (2024). Experimental investigation of wire electrical discharge machining parameters on WE43 magnesium alloy. Metallurgical Research & Technology, 121(2), 203. https://doi.org/10.1051/metal/2024005
[21] Siyoum, Y. B., Kindie, F. G., Gebeyehu, M. A., Chanie, S. E., Yeshiwas, T. A., & Zelalem, Y. A. (2025). Comparative optimization of wire-cut EDM parameter for enhancing surface finish and machining time on stainless steel: A machine learning, genetic algorithms, teaching–learning-based optimization, and multi-objective Jaya approach. The International Journal of Advanced Manufacturing Technology, 137(9), 5339–5362. https://doi.org/10.1007/s00170-025-15450-w
[22] Sen, B., Dasgupta, A., & Bhowmik, A. (2024). Optimizing wire-cut EDM parameters through evolutionary algorithm: A study for improving cost efficiency in turbo-machinery manufacturing. International Journal on Interactive Design and Manufacturing (IJIDeM). https://doi.org/10.1007/s12008-024-02001-y
[23] Zheng, J., Qi, T., Hu, X., Pan, Q., Zhang, Z., Guan, A., Ling, W., Peng, T., Wu, J., & Wang, W. (2024). Energy consumption assessment and economic analysis of a novel sustainable electro-machining auxiliary system. Applied Energy, 357, 122521. https://doi.org/10.1016/j.apenergy.2023.122521 
[24] Kokare, S., Oliveira, J. P., Santos, T. G., & Godina, R. (2023). Environmental and economic assessment of a steel wall fabricated by wire-based directed energy deposition. Additive Manufacturing, 61, 103316. https://doi.org/10.1016/j.addma.2022.103316
[25] Takele, Y. F., & Woldeyohannes, A. D. (2025). Optimal material selection for high temperature tribological application: An integrated multi-criteria decision study. Discover Materials, 5(1), 33. https://doi.org/10.1007/s43939-025-00209-7
[26] Zhang, P., Yue, X., Wang, S., Sun, Y., Zhou, H., & Zhang, J. (2024). Characterization of surface integrity of 7075-T6 aluminum alloy subjected to microbiologically induced corrosion during high-speed machining. Journal of Alloys and Compounds, 1008, 176843. https://doi.org/10.1016/j.jallcom.2024.176843 
[27] Muhammad, A. K., Mohammed, T. W., & Resan, K. K. (2024). Chemical machining of aluminum alloy 2024: The critical roles of temperature and solution concentration in enhancing corrosion rate and surface texture. Journal of Engineering and Technological Sciences, 56(4), 489–498. https://doi.org/10.5614/j.eng.technol.sci.2024.56.4.5
[28] Alam, M. A., Jahan, A., Suzuki, E., & Yashiro, H. (2024). Surface morphology and corrosion behavior of pure aluminum and its alloys in aqueous sulfuric acid medium. Engineering Reports, 6(4), e12750. https://doi.org/10.1002/eng2.12750
[29] Kiyak, M. (2022). Investigation of effects of cutting parameters on surface quality and hardness in the wire-EDM process. The International Journal of Advanced Manufacturing Technology, 119(1), 647–655. https://doi.org/10.1007/s00170-021-08302-w 
[30] Reddy, M. C., Rao, K. V., & Suresh, G. (2021). An experimental investigation and optimization of energy consumption and surface defects in wire cut electric discharge machining. Journal of Alloys and Compounds, 861, 158582. https://doi.org/10.1016/j.jallcom.2020.158582
[31] de Argandoña, E. S., Zabala, A., Galdos, L., & Mendiguren, J. (2020). The effect of material surface roughness in aluminum forming. Procedia Manufacturing, 47, 591–595. https://doi.org/10.1016/j.promfg.2020.04.182
[32] DIN EN ISO 6506-1:2015-02. (2015). Metallic materials – Brinell hardness test – Part 1: Test method. Beuth Verlag GmbH, Berlin, Germany.
[33] Sedehi, S. M., Samarghandi, M., Samarghandi, A., & Maraki, M. (2024). The effect of simple shear extrusion on the microstructure and surface properties of aluminum components produced by powder metallurgy. Iranian Journal of Materials Forming, 11(1), 24–33. https://doi.org/10.22099/ijmf.2024.49501.1282
[34] Haynes, G. (1990). Review of laboratory corrosion tests and standards. In Corrosion Testing and Evaluation: Silver Anniversary Volume. ASTM International. https://doi.org/10.1520/stp39195s
[35] Mohammed, A. A., Khodair, Z. T., & Khadom, A. A. (2020). Preparation and investigation of the structural properties of α-Al₂O₃ nanoparticles using the sol-gel method. Chemical Data Collections, 29, 100531. https://doi.org/10.1016/j.cdc.2020.100531
[36] Wang, X., Qiang, D., Hosier, I., Zhu, Y., Chen, G., & Andritsch, T. (2020). Effect of water on the breakdown and dielectric response of polypropylene/nano-aluminium nitride composites. Journal of Materials Science, 55(21), 8900–8916. https://doi.org/10.1007/s10853-020-04635-1
[37] Ho, K., Newman, S., Rahimifard, S., & Allen, R. (2004). State of the art in wire electrical discharge machining (WEDM). International Journal of Machine Tools and Manufacture, 44, 1247–1259. https://doi.org/10.1016/j.ijmachtools.2004.04.017
[38] Roy, A., Narendranath, S., & Pramanik, A. (2020). Effect of peak current and peak voltage on machined surface morphology during WEDM of TiNiCu shape memory alloys. Journal of Mechanical Science and Technology, 34, 3957–3961. https://doi.org/10.1007/s12206-020-2205-x
[39] Ghanem, F., Braham, C., & Sidhom, H. (2003). Influence of steel type on electrical discharge machined surface integrity. Journal of Materials Processing Technology, 142, 163–173. https://doi.org/10.1016/S0924-0136(03)00572-7
[40] Jangra, K. K. (2014). An experimental study for multi-pass cutting operation in wire electrical discharge machining of WC-5.3% Co composite. International Journal of Advanced Manufacturing Technology, 76, 971–982. https://doi.org/10.1007/s00170-014-6218-4
[41] Chaudhari, R., Vora, J. J., Patel, V., Lacalle, L. L., & Parikh, D. M. (2020). Effect of WEDM process parameters on surface morphology of nitinol shape memory alloy. Materials, 13(21), 4943. https://doi.org/10.3390/ma13214943
[42] Magabe, R., Sharma, N., Gupta, K., & Davim, J. P. (2019). Modeling and optimization of Wire-EDM parameters for machining of Ni55.8Ti shape memory alloy using hybrid approach of Taguchi and NSGA-II. International Journal of Advanced Manufacturing Technology, 102, 1703–1717. https://doi.org/10.1007/s00170-019-03287-z
[43] Zhang, P., Yue, X., Gao, Y., Wang, S., Sun, Y., Zhou, H., & Zhang, J. (2024). Research on the surface corrosion behavior of 7075-T6 aluminum alloy during high-speed machining and particle inclusion water jet composite reinforcement. Vacuum, 219, 112700. https://doi.org/10.1016/j.vacuum.2023.112700
[44] Sun, X., & Hu, J. (2023). Corrosion types and measures for petrochemical equipment. International Journal of Energy, 3(2). https://doi.org/10.54097/ije.v3i2.002
[45] Kuo, C. G., Hsu, C. Y., Chen, J. H., & Lee, P. W. (2017). Discharge current effect on machining characteristics and mechanical properties of aluminum alloy 6061 workpiece produced by electric discharging machining process. Advances in Mechanical Engineering, 9(11), 1687814017730756. https://doi.org/10.1177/1687814017730756
[46] Zhang, Z., Yu, H., Zhang, Y., Yang, K., Li, W., Chen, Z., & Zhang, G. (2018). Analysis and optimization of process energy consumption and environmental impact in electrical discharge machining of titanium superalloys. Journal of Cleaner Production, 198, 833–846. https://doi.org/10.1016/j.jclepro.2018.07.053