Influence of Homogenization Duration on Interdendritic Phase Elimination and Hardness Behavior in AD730 Nickel-based Superalloy

Document Type : Research Paper

Authors

Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, Iran

Abstract

In this study, the effect of homogenization time on the microstructural evolution and mechanical properties of the cast AD730 superalloy at 1100 °C was investigated. The as-cast microstructure consisted of a dendritic structure along with interdendritic phases, including η phase, Laves phase, γ/γ′ eutectic, and MC carbides. Microscopic examinations and localized analyses revealed that the eutectic and Laves phases were completely dissolved during the early stages of homogenization, while the η phase disappeared after 10 hours of treatment. Prolonging the homogenization time promoted chemical uniformity and gradual elimination of the dendritic structure, resulting in a nearly uniform microstructure after 25 hours. However, at this stage, the formation of voids was detected, indicating adverse effects due to over-homogenization. Hardness measurements showed a continuous decrease in hardness with increasing homogenization time, attributed to the gradual dissolution of the strengthening γ′ precipitates. Based on these results, an optimal homogenization duration of 15 to 20 hours at 1100 °C is suggested, which can eliminate undesirable phases and enhance compositional uniformity while avoiding structural defects.

Keywords


[1] Jia, L., Cui, H., Yang, S., Lv, S., Xie, X., & Qu, J. (2023). As-cast microstructure and homogenization kinetics of a typical hard-to-deform Ni-base superalloy. Journal of Materials Research and Technology, 23, 5368–5381. https://doi.org/10.1016/j.jmrt.2023.01.150
[2] Li, X. X., Jia, C. L., Zhang, Y., Lü, S. M., & Jiang, Z. H. (2020). Incipient melting phase and its dissolution kinetics for a new superalloy. Transactions of Nonferrous Metals Society of China, 30, 2107–2118. https://doi.org/10.1016/S1003-6326(20)65364-X
[3] Li, X. X., Jia, C. L., & Yu, A. (2023, June). Influence of homogenization degree on microstructure and mechanical properties for a novel wrought superalloy. In Journal of Physics: Conference Series (Vol. 2519, No. 1, p. 012040). IOP Publishing. https://doi.org/10.1088/1742-6596/2519/1/012040
[4] Devaux, A., Picqué, B., Gervais, M. F., Georges, E., Poulain, T., & Héritier, P. (2012). AD730TM-A new nickel-based superalloy for high temperature engine rotative parts. TMS Superalloys911919. https://doi.org/10.7449/2012/Superalloys_2012_911_919
[5] Devaux, A., Helstroffer, A., Cormier, J., Villechaise, P., Douin, J., Hantcherli, M., & Pettinari‐Sturmel, F. (2014, November). Effect of aging heat‐treatment on mechanical properties of AD730™ superalloy. In 8th International Symposium on Superalloy 718 and Derivatives (pp. 521-535). Hoboken, NJ, USA: John Wiley & Sons, Inc. https://doi.org/10.1002/9781119016854.ch41
[6] Masoumi, F., Jahazi, M., Cormier, J., & Shahriari, D. (2014). Dissolution kinetics and morphological changes of γ′ in AD730TM superalloy. In MATEC Web of Conferences (Vol. 14, p. 13005). EDP Sciences. https://doi.org/10.1051/matecconf/20141413005
[7] Belan, J. (2016). GCP and TCP Phases Presented in Nickel-base Superalloys. Materials Today: Proceedings, 3(4), 936–941. https://doi.org/10.1016/j.matpr.2016.03.024
[8] Li, X., Jia, C., Jiang, Z., Zhang, Y., & Lv, S. (2020). Investigation of solidification behavior in a new high alloy Ni-based superalloy. JOM72(11), 4139-4147. https://doi.org/10.1007/s11837-020-04346-7
[9] Li, Y., et al. (2022). Study on microsegregation and homogenization process of a novel nickel-based wrought superalloy. Journal of Materials Research and Technology., 19, 3366–3379. https://doi.org/10.1016/j.jmrt.2022.06.088
[10] Shui, L., & Fu, J. (2022). An investigation on as-cast microstructure and homogenization of nickel base superalloy René 65. High Temperature. Materials and Processes., 41, 555–567. https://doi.org/10.1515/htmp-2022-0245
[11] Miao, Z. J., Shan, A. D., Lu, J., & Song, H. W. (2011). Segregation and diffusion characterisation in two-stage homogenisation of conventional superalloy. Materials Science and Technology., 27(10), 1551–1557. https://doi.org/10.1179/026708310X12815992418139
[12] Blaizot, J., Finet, L., Chabrier, A., Fornara, A., Fage, M., Remichi, R., Dadé, M., & Perez, M. (2024, August). Gamma Prime Precipitation in Cast and Wrought AD730® Superalloy. In International Symposium on Superalloys (pp. 762-773). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-63937-1_72
[13] Li, X. X., Jia, C. L., Zhang, Y., Lv, S. M., & Jiang, Z. H. (2020). Segregation and homogenization for a new nickel-based superalloy. Vacuum, 177, 109379. https://doi.org/10.1016/j.vacuum.2020.109379
[14] Zhou, Z., Zhang, R., Cui, C., Zhou, Y., & Sun, X. (2021). Effects of homogenization treatment on the microsegregation of a Ni–Co based superalloy produced by directional solidification. Acta Metallurgica Sinica (English Letters) 34(7), 943–954. https://doi.org/10.1007/s40195-021-01192-7
[15] Ruan, J. J., Ueshima, N., & Oikawa, K. (2018). Phase transformations and grain growth behaviors in superalloy 718. Journal of Alloys and Compounds., 737, 83–91. https://doi.org/10.1016/j.jallcom.2017.11.327
[16] Tan, Y. G., et al. (2019). Element segregation and solidification behavior of a Nb, Ti, Al co-strengthened superalloy ЭК151. Acta Metallurgica Sinica (English Letters), 32, 1298–1308. https://doi.org/10.1007/s40195-019-00894-3
[17] Ling, L., Han, Y., Zhou, W., Gao, H., Shu, D., Wang, J., Kang, M., & Sun, B. (2015). Study of microsegregation and Laves phase in INCONEL718 superalloy regarding cooling rate during solidification. Metallurgical and Materials Transactions A, 46, 354–361. https://doi.org/10.1007/s11661-014-2614-5
[18] Wilson, A. S. (2016). Formation and effect of topologically close-packed phases in nickel-base superalloys. Materials Science and Technology, 33(9), 1108-1118. https://doi.org/10.1080/02670836.2016.1187335
[19] Stein, F. (2020). Laves phases: a review of their functional and structural applications and an improved fundamental understanding of stability and properties Journal of Materials Science, 56(9), 5321-5427. https://doi.org/10.1007/s10853-020-05509-2
[20] Floreen, S., Fuchs, G. E., & Yang, W. J. (1994). The metallurgy of alloy 625. Superalloys718(625), 13-37. https://doi.org/10.7449/1994/superalloys_1994_13_37
[21] Chen, W. (2000). Composition effects on macroscopic solidification segregation of superalloys. West Virginia University. https://doi.org/10.33915/etd.1229
[22] Shafiee, A., Nili-Ahmadabadi, M., Kim, H. S., & Jahazi, M. (2020). Development and microstructural characterization of a new wrought high entropy superalloy. Metals and Materials International, 26(5), 591–602. https://doi.org/10.1007/s12540-019-00360-w
[23] Mirzaie, Z., Ebrahimi, G. R., Ezatpour, H., & Ali Akbari Sani, S. (2021). Hot deformation behavior and development of constitutive equations on a novel γ-γ/Ni-base superalloy AD730. Iranian Journal of Materials Forming, 8(3), 4-17. https://doi.org/10.22099/IJMF.2021.40096.1179
[24] Zhuang, X., Tan, Y., Zhao, L., You, X., Li, P., & Cui, C. (2020). Microsegregation of a new Ni-Co-based superalloy prepared through electron beam smelting and its homogenization treatment, Journal of Materials Research and Technology, 9(3), 5422-5430. https://doi.org/10.1016/j.jmrt.2020.03.068
[25] Chen, K., Rui, S., Wang, F., Dong, J., & Yao, Z. (2019). Microstructure and homogenization process of as-cast GH4169D alloy for novel turbine disk, International Journal of Minerals, Metallurgy, and Materials, 26(7) 889–900. https://doi.org/10.1007/s12613-019-1802-0
[26] Roy, I., Balikci, E., Ibekwe, S., & Raman, A. (2005). Precipitate growth activation energy requirements in the duplex size γ′ distribution in the superalloy IN738LC, Journal of Materials Science, 40(23), 6207-6215. https://doi.org/10.1007/s10853-005-3154-6
[27] Zhao, S., Zhang, Y., & Weber, W. J. (2018). Stability of vacancy-type defect clusters in Ni based on first-principles and molecular dynamics simulations. Scripta Materialia, 145, 71-75. https://doi.org/10.1016/j.scriptamat.2017.10.003
[28] Anton, D. L., & Giamei, A. F. (1985). Porosity distribution and growth during homogenization in single crystals of a nickel-base superalloy. Materials Science and Engineering, 76, 173-180. https://doi.org/10.1016/0025-5416(85)90091-6
[29] Epishin, A., Link, T., Svetlov, I. L., Nolze, G., Neumann, R. S., & Lucas, H. (2013). Mechanism of porosity growth during homogenisation in single crystal nickel-based superalloys. International Journal of Materials Research, 104(8), 776-782. https://doi.org/10.3139/146.110924
[30] y Puente, A. P., & Dunand, D. C. (2018). Effect of Cr content on interdiffusion and Kirkendall pore formation during homogenization of pack-aluminized Ni and Ni-Cr wires. Intermetallics, 101, 108-115. https://doi.org/10.1016/j.intermet.2018.07.007
[31] y Puente, A. P., Erdeniz, D., Fife, J. L., & Dunand, D. C. (2016). In situ X-ray tomographic microscopy of Kirkendall pore formation and evolution during homogenization of pack-aluminized Ni–Cr wires. Acta Materialia103, 534-546. https://doi.org/10.1016/j.actamat.2015.10.013