Feasibility of Deep Crack Repair Using a Novel Friction Stir Chip Welding Process

Document Type : Research Paper

Authors

1 Department of Mechanical Engineering, University of Birjand, Birjand, Iran

2 Department of Mechanical Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran

3 Department of Mechanical and Materials Engineering, Birjand University of Technology, Birjand, Iran

Abstract

A new friction stir chip welding (FSCW) method is presented to use waste machining chips for repairing deep cracks. This technique provides an economical solution for industry by reducing landfill waste and minimizing the energy-intensive demand for primary aluminum production. Aluminum 7075 was used to evaluate the feasibility of this method. The crack was removed by an in-depth hole and filled with machining chips, which were subsequently welded using non-consumable tools. The most effective parameter for achieving a proper joint was the input heat, governed by the tool rotational speed and holding time. The effects of these parameters on weld quality, microstructure and hardness across different welding zones were investigated. The results showed that increasing the tool rotational speed and holding time led to higher heat input. The specimen welded at the highest speed and holding time exhibited the greatest hardness and strength. Specimens with a continuous structure demonstrated higher hardness, and vice versa.

Keywords


[1] Heidarzadeh, A., Barenji, R. V., Esmaily, M., & Ilkhichi, A. R. (2015). Tensile properties of friction stir welds of AA 7020 aluminum alloy. Transactions of the Indian Institute of Metals, 68, 757–767. https://doi.org/10.1007/s12666-014-0508-2
[2] Wen, Q., Li, W., Wang, W., Wang, F., Gao, Y., & Patel, V. (2019). Experimental and numerical investigations of bonding interface behavior in stationary shoulder friction stir lap welding. Journal of Materials Science & Technology, 35(1), 192–200. https://doi.org/10.1016/j.jmst.2018.09.028
[3] Liu, H., Zhao, Y., Su, X., Yu, L., & Hou, J. (2013). Microstructural characteristics and mechanical properties of friction stir spot welded 2A12-T4 aluminum alloy. Advances in Materials Science and Engineering, 2013, 719306. https://doi.org/10.1155/2013/719306
[4] Li, G., Zhou, L., Luo, L., Wu, X., & Guo, N. (2019). Microstructural evolution and mechanical properties of refill friction stir spot welded alclad 2A12-T4 aluminum alloy. Journal of Materials Research and Technology, 8(5), 4115–4129. https://doi.org/10.1016/j.jmrt.2019.07.021
[5] Jo, D. S., Kim, J. H., & Kim, B. M. (2019). Feasibility study on application of hot forming quenching to patchwork blanks using two-stage refilled friction stir spot welding. Journal of Manufacturing Processes, 41, 66–73. https://doi.org/10.1016/j.jmapro.2019.03.012
[6] Sharma, Y., Singh, K. J., & Vasudev, H. (2022). Experimental studies on friction stir welding of aluminium alloys. Materials Today: Proceedings, 50, 2387–2391. https://doi.org/10.1016/j.matpr.2021.10.254
[7] Malopheyev, S., Vysotskiy, I., Kulitskiy, V., Mironov, S., & Kaibyshev, R. (2016). Optimization of processing-microstructure-properties relationship in friction-stir welded 6061-T6 aluminum alloy. Materials Science and Engineering: A, 662, 136–143. https://doi.org/10.1016/j.msea.2016.03.063
[8] Ahmed, M. M. Z., El-Sayed Seleman, M. M., Ahmed, E., Reyad, H. A., Touileb, K., & Albaijan, I. (2022). Friction stir spot welding of different thickness sheets of aluminum alloy AA6082-T6. Materials, 15(9), 2971. https://doi.org/10.3390/ma15092971
[9] Fereiduni, E., Movahedi, M., & Kokabi, A. H. (2015). Aluminum/steel joints made by an alternative friction stir spot welding process. Journal of Materials Processing Technology, 224, 1–10. https://doi.org/10.1016/j.jmatprotec.2015.04.028
[10] Yuan, T., Kang, S., Jiang, X., & Zhao, P. (2023). Exit-hole repairing in 7475 aluminium alloy welded joints based on refill friction stir processing. Science and Technology of Welding and Joining, 28(8), 819–828. https://doi.org/10.1080/13621718.2023.2235791
[11] Li, M., Zhang, C., Wang, D., Zhou, L., Wellmann, D., & Tian, Y. (2019). Friction stir spot welding of aluminum and copper: a review. Materials, 13(1), 156. https://doi.org/10.3390/ma13010156
[12] Sajed, M. (2016). Parametric study of two-stage refilled friction stir spot welding. Journal of Manufacturing Processes, 24, 307–317. https://doi.org/10.1016/j.jmapro.2016.09.011
[13] Sajed, M., & Seyedkashi, S. H. (2020). Multilayer friction stir plug welding: A novel solid-state method to repair cracks and voids in thick aluminum plates. CIRP Journal of Manufacturing Science and Technology, 31, 467–477. https://doi.org/10.1016/j.cirpj.2020.07.009
[14] Shigematsu, I., Suzuki, K., Imai, T., Kwon, Y. J., & Saito, N. (2005). Friction stir welding of recycled A6061 aluminum plates fabricated by hot-extrusion of machined chips. Journal of Materials Science, 40(11), 2971–2974. https://doi.org/10.1007/s10853-005-2390-0
[15] Haase, M., & Tekkaya, A. E. (2014). Recycling of aluminum chips by hot extrusion with subsequent cold extrusion. Procedia Engineering, 81, 652–657. https://doi.org/10.1016/j.proeng.2014.10.055
[16] Li, X., Baffari, D., & Reynolds, A. P. (2018). Friction stir consolidation of aluminum machining chips. The International Journal of Advanced Manufacturing Technology, 94, 2031–2042. https://doi.org/10.1007/s00170-017-1016-4
[17] El-Mehtedi, M., Forcellese, A., Mancia, T., Simoncini, M., & Spigarelli, S. (2019). A new sustainable direct solid state recycling of AA1090 aluminum alloy chips by means of friction stir back extrusion process. Procedia CIRP, 79, 638–643. https://doi.org/10.1016/j.procir.2019.02.062
[18] Abbas, A. T., Taha, M. A., Ragab, A. E., El-Danaf, E. A., & Abd El Aal, M. I. (2017). Effect of equal channel angular pressing on the surface roughness of solid state recycled aluminum alloy 6061 chips. Advances in Materials Science and Engineering, 2017, 5131403. https://doi.org/10.1155/2017/5131403
[19] Yavari Nouri, M., Seyedkashi, S. M. H., & Sajed, M. (2021). Experimental investigation on process parameters of dissimilar double-layered wire produced by modified friction stir extrusion process. International Journal of Advanced Design and Manufacturing Technology, 14(3), 1–7. https://doi.org/10.30495/admt.2021.1911339.1220
[20] Laurent-Brocq, M., et al. (2023). Solid state recycling of aluminium chips: Multi-technique characterization and analysis of oxidation. Materialia, 31, 101864. https://doi.org/10.1016/j.mtla.2023.101864
[21] Buffa, G., Campanella, D., Adnan, M., La Commare, U., Ingarao, G., & Fratini, L. (2024). Improving the industrial efficiency of recycling aluminum alloy chips using friction stir extrusion: thin wires production process. International Journal of Precision Engineering and Manufacturing - Green Technology, 11, 1133–1146. https://doi.org/10.1007/s40684-023-00573-w
[22] Carta, M., Ben Khalifa, N., Buonadonna, P., El Mohtadi, R., Bertolino, F., & El Mehtedi, M. (2024). Innovative solid-state recycling of aluminum alloy AA6063 chips through direct hot rolling process. Metals, 14(12), 1442. https://doi.org/10.3390/met14121442
[23] Bhardwaj, N., Ganesh Narayanan, R., & Dixit, U. S. (2020). Refilling of pinhole in friction stir spot welding using waste chips. In M. Shunmugam & M. Kanthababu (Eds.), Advances in Additive Manufacturing and Joining (pp. 417–426). Springer. https://doi.org/10.1007/978-981-32-9433-2_34
[24] Wan, B., Chen, W., Lu, T., Liu, F., Jiang, Z., & Mao, M. (2017). Review of solid state recycling of aluminum chips. Resources, Conservation & Recycling, 125, 37–47. https://doi.org/10.1016/j.resconrec.2017.06.004
[25] Altharan, Y. M., Shamsudin, S., Al-Alimi, S., Saif, Y., & Zhou, W. (2024). A review on solid-state recycling of aluminum machining chips and their morphology effect on recycled part quality. Heliyon, 10, e34433. https://doi.org/10.1016/j.heliyon.2024.e34433
[26] Murray, J. W., et al. (2024). A review of principles and options for the re-use of machining chips by solid, semi-solid or melt-based processing. Journal of Materials Processing Technology, 331, 118514. https://doi.org/10.1016/j.jmatprotec.2024.118514
[27] Han, J., Paidar, M., Vignesh, R. V., Mehta, K. P., Heidarzadeh, A., & Ojo, O. O. (2020). Effect of shoulder features during friction spot extrusion welding of 2024-T3 to 6061-T6 aluminium alloys. Archives of Civil and Mechanical Engineering20(3), 84. https://doi.org/10.1007/s43452-020-00086-2
[28] Heidarzadeh, A., Javidani, M., Mofarrehi, M., Farzaneh, A., & Chen, X. G. (2021). Submerged dissimilar friction stir welding of AA6061 and AA7075 aluminum alloys: Microstructure characterization and mechanical property. Metals11(10), 1592. https://doi.org/10.3390/met11101592     
[29] Panda, B., Garg, A., Jian, Z., Heidarzadeh, A., & Gao, L. (2016). Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed. Frontiers of Mechanical Engineering11(3), 289-298. https://doi.org/10.1007/s11465-016-0393-y
[30] Çam, G., Javaheri, V., & Heidarzadeh, A. (2023). Advances in FSW and FSSW of dissimilar Al-alloy plates. Journal of Adhesion Science and Technology, 37(2), 162-194. https://doi.org/10.1080/01694243.2022.2028073
[31] Baffari, D., Reynolds, A. P., Masnata, A., Fratini, L., & Ingarao, G. (2019). Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization. Journal of Manufacturing Processes, 43, 63-69. https://doi.org/10.1016/j.jmapro.2019.03.049
[32] Iwaszko, J., & Sajed, M. (2021). Technological aspects of producing surface composites by friction stir processing—A review. Journal of Composites Science, 5(12), 323. https://doi.org/10.3390/jcs5120323
[33] Akbari, M., Asadi, P., Behnagh, R. A., Bedir, F., Choupani, N., & Sadowski, T. (2025). Process parameters and tool design in friction stir extrusion: A sustainable recycling technique. Engineering Reports, 7(1), e13060. https://doi.org/10.1002/eng2.13060