Investigating Hot Deformation Behavior of Ti-6Al-4V Alloy with Fully Lamellar Microstructure Using Work Hardening Rate Characteristic and Processing Map Development

Document Type : Research Paper

Authors

Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute, P.O. Box: 14395-836, Tehran, Iran

Abstract

In this study, the hot deformation behavior of fully lamellar Ti-6Al-4V alloy was investigated through work hardening rate analysis and processing map development based on experimental hot compression data. Hot compression tests were performed over a temperature range of 700–1050 °C and strain rates from 0.001 to 1 s⁻¹. Work hardening rate curves were plotted against true stress and true strain using a numerical differentiation method. The results indicated that the work hardening rate increased during straining, reached a maximum, and subsequently decreased to zero due to the activation of dynamic softening mechanisms. The onset of dynamic recrystallization was identified by determining the critical stress from the work hardening rate–stress curve. Dynamic strain aging was detected as fluctuations in the work hardening rate–strain curve. A processing map at a strain of 0.8 was developed to characterize safe and unstable hot deformation domains. Furthermore, microstructural observations were employed to evaluate variations in power dissipation efficiency during hot deformation.

Keywords


[1] Ji, S. M., Jang, S. M., Lee, Y. S., Kwak, H. M., Choi, J. M., & Joun, M. S. (2022). Characterization of Ti-6Al-4V alloy in the temperature range of warm metal forming and fracture analysis of the warm capping process. Journal of Materials Research and Technology, 18, 1590-1606. https://doi.org/10.1016/j.jmrt.2022.03.066
[2] Pilehva, F., Zarei-Hanzaki, A., Fatemi-Varzaneh, S., & Khalesian, A. (2015). Hot deformation and dynamic recrystallization of Ti-6Al-7Nb biomedical alloy in single-phase β region. Journal of Materials Engineering and Performance, 24(5), 1799-1808. https://doi.org/10.1007/s11665-015-1468-3
[3] Leyens, C., & Peters, M. (2006). Titanium and titanium alloys: fundamentals and applications, Wiley Online Library.
[4] Chen, G., Ren, C., Qin, X., & Li, J. (2015). Temperature dependent work hardening in Ti–6Al–4V alloy over large temperature and strain rate ranges: Experiments and constitutive modeling, Materials & Design. 83, 598-610. https://doi.org/10.1016/j.matdes.2015.06.048
[5] Jiang, F., Fei, L., Jiang, H., Zhang, Y., Feng, Z., & Zhao, S. (2023). Constitutive model research on the hot deformation behavior of Ti6Al4V alloy under wide temperatures. Journal of Materials Research and Technology, 23, 1062-1074. https://doi.org/10.1016/j.jmrt.2023.01.021
[6] Gostariani, R., Vaez, G., Ansaripour, M., & Babanejad, A. (2024). Constitutive modeling and microstructural evolution of hot deformed Ti-6Al-4V alloy starting with initial fully lamellar microstructure. Iranian Journal of Materials Forming, 11(2), 30-45. https://doi.org/10.22099/ijmf.2024.49974.1292
[7] Jha, J. S., Toppo, S. P., Singh, R., Tewari, A., & Mishra, S. K. (2019). Flow stress constitutive relationship between lamellar and equiaxed microstructure during hot deformation of Ti-6Al-4V. Journal of Materials Processing Technology, 270, 216-227. https://doi.org/10.1016/j.jmatprotec.2019.02.030
[8] Lin, Y. C., Wu, Q., Pang, G. D., Jiang, X. Y., & He, D. G. (2020). Hot tensile deformation mechanism and dynamic softening behavior of Ti–6Al–4V alloy with thick lamellar microstructures. Advanced Engineering Materials, 22(3), 1901193.  https://doi.org/10.1002/adem.201901193
[9] Ezatpour, H., Ebrahimi, G., & Zarghani, F., (2024). Effect of processing parameters on the morphology of α-phase in Ti-6Al-4V alloy during the two-step hot deformation. Iranian Journal of Materials Forming, 10(3), 54-62. https://doi.org/10.22099/ijmf.2024.49049.1277
[10] Mirzadeh, H., & Najafizadeh, A. (2010). Prediction of the critical conditions for initiation of dynamic recrystallization. Materials & Design, 31(3), 1174-1179. https://doi.org/10.1016/j.matdes.2009.09.038
[11] Ryan, N., & McQueen, H. (1990). Dynamic softening mechanisms in 304 austenitic stainless steel. Canadian Metallurgical Quarterly, 29(2), 147-162. https://doi.org/10.1179/cmq.1990.29.2.147
[12] Poliak,   E. I., & Jonas, J. J. (2003). Initiation of dynamic recrystallization in constant strain rate hot deformation. ISIJ International, 43(5), 684-691. https://doi.org/10.2355/isijinternational.43.684
[13] Najafizadeh, A., & Jonas, J. J. (2006). Predicting the critical stress for initiation of dynamic recrystallization. ISIJ International, 46(11), 1679-1684.  https://doi.org/10.2355/isijinternational.46.1679
[14] Prasad, Y. (2003). Processing maps: A status report, Journal of Materials Engineering and Performance. 12(6), 638-645. https://doi.org/10.1361/105994903322692420
[15] Prasad, Y. V. R. K., Gegel, H. L., Doraivelu, S. M., Malas, J. C., Morgan, J. T., Lark, K. A., & Barker, D. R. (1984). Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metallurgical Transactions A15(10), 1883-1892. https://doi.org/10.1007/BF02664902
[16] Donachie, M. J. (2000). Titanium: a technical guide. ASM International.
[17] Gostariani, R., & Asadi Asadabad, M. (2023). Studying the hot deformation behavior of Zr-1Nb alloy using processing map and kinetic analysis. Journal of Materials Engineering and Performance, 32(5), 2151-2164. https://doi.org/10.1007/s11665-022-07267-5
[18] Gostariani, R., Ebrahimi, R., & Asadi Asadabad, M. (2018). The study of hot deformation behavior of mechanically milled and hot extruded Al–BN nanocomposite. Transactions of the Indian Institute of Metals, 71(5), 1127-1136. https://doi.org/10.1007/s12666-017-1248-x
[19] Eskandari, H., Reihanian, M., & Alavi Zaree, S. (2023). An analysis of efficiency parameter and its modifications utilized for development of processing maps. Iranian Journal of Materials Forming, 10(4), 45-51. https://doi.org/10.22099/ijmf.2024.49537.1283
[20] Ebrahimi, R., Najafizadeh, A. (2004). Optimization of hot workability in ti-if steel by using the processing map. International Journal of ISSI, 1(1), 1-7.
[21] Kumar, S. S., Raghu, T., Bhattacharjee, P. P., Rao, G. A., & Borah, U. (2017). Work hardening characteristics and microstructural evolution during hot deformation of a nickel superalloy at moderate strain rates. Journal of Alloys and Compounds, 709, 394-409. https://doi.org/10.1016/j.jallcom.2017.03.158
[22] Ning, Y., Xie, B., Liang, H., Li, H., Yang, X., Guo, H. (2015). Dynamic softening behavior of TC18 titanium alloy during hot deformation. Materials & Design, 71, 68-77. https://doi.org/10.1016/j.matdes.2015.01.009
[23] Kim, J. H., Semiatin, S., Lee, Y. H., & Lee, C. S. (2011). A self-consistent approach for modeling the flow behavior of the alpha and beta phases in Ti-6Al-4V. Metallurgical and Materials Transactions A, 42(7), 1805-1814. https://doi.org/10.1007/s11661-010-0567-x
[24] Mesarovic, S. D. (1995). Dynamic strain aging and plastic instabilities. Journal of the Mechanics and Physics of Solids, 43(5), 671-700. https://doi.org/10.1016/0022-5096(95)00010-G
[25] Kazim, S. M., Prasad, K., & Chakraborty, P. (2024). Analysis of dynamic strain aging in titanium alloys using CPFEM. Materials Today: Proceedings, 108, 21-26. https://doi.org/10.1016/j.matpr.2023.07.268
[26] Prasad, K., & Varma, V. K. (2008). Serrated flow behavior in a near alpha titanium alloy IMI 834. Materials Science and Engineering: A, 486(1-2), 158-166. https://doi.org/10.1016/j.msea.2007.09.020
[27] Prasad, Y., Rao, K., & Sasidhar, S. (2015). Hot working guide: a compendium of processing maps, ASM International.
[28] Bodunrin, M. O., Chown, L. H., van der Merwe, J. W., Alaneme, K. K. (2019). Hot working of Ti-6Al-4V with a complex initial microstructure. International Journal of Material Forming, 12(5), 857-874. https://doi.org/10.1007/s12289-018-1457-9
[29] Seshacharyulu, T., Medeiros, S. C., Frazier, W. G., & Prasad  Y. V. R. K. (2002). Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure. Materials Science and Engineering: A, 325(1-2), 112-125. https://doi.org/10.1016/S0921-5093(01)01448-4
[30] Sen, I., Kottada, R. S., & Ramamurty, U. (2010). High temperature deformation processing maps for boron modified Ti–6Al–4V alloys. Materials Science and Engineering: A, 527(23), 6157-6165. https://doi.org/10.1016/j.msea.2010.06.044
[31] Zhang, J., Li, H., & Zhan, M. (2020). Review on globularization of titanium alloy with lamellar colony, Manufacturing Review, 7, 18-32.
https://doi.org/10.1051/mfreview/2020015
[32] Chong, Y., Bhattacharjee, T., Gholizadeh, R., Yi, J., Tsuji, N. (2019). Investigation on the hot deformation behaviors and globularization mechanisms of lamellar Ti–6Al–4V alloy within a wide range of deformation temperatures. Materialia, 8, 100480. https://doi.org/10.1016/j.mtla.2019.100480