[2] Wang, L., He, L., Liu, F., Yuan, H., Li, J., & Chen, M. (2024). Mechanical characterization of multifunctional metal-coated polymer lattice structures.
Materials,
17(3), 741.
https://doi.org/10.3390/ma17030741
[3] Rohani Nejad, S., Hosseinpour, M., & Mirbagheri, S. M. H. (2022). Investigation of energy absorption behavior of light sandwich panel with nickel/polymer open-cell foam core during compression.
Advanced Engineering Materials,
24(12), 1–13.
https://doi.org/10.1002/adem.202200663
[4] Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., & Brandt, M. (2019). SLM lattice structures: Properties, performance, applications and challenges.
Materials and Design,
183, 108137.
https://doi.org/10.1016/j.matdes.2019.108137
[6] Badiche, X., Forest, S., Guibert, T., Bienvenu, Y., Bartout, J. D., Ienny, P., Croset, M., & Bernet, H. (2000). Mechanical properties and non-homogeneous deformation of open-cell nickel foams: application of the mechanics of cellular solids and of porous materials. Materials Science and Engineering: A, 289(1-2), 276-288.
[7] McCullough, K. Y., Fleck, N. A., & Ashby, M. F. (1999). Uniaxial stress–strain behaviour of aluminium alloy foams. Acta materialia, 47(8), 2323-2330.
[8] Gibson, L. J., & Ashby, M. F. (1997). Cellular solids: structure and properties (2nd ed.). Cambridge University Press.
[10] Rohani Nejad, S., Hesari, S., & Mirbagheri, S. M. H. (2024). Effect of nickel and copper shells on mechanical properties of advanced lightweight TPU metamaterials during uniaxial compression.
Scientific Reports,
14(1), 1–16.
https://doi.org/10.1038/s41598-024-82317-7
[11] Arnet, R., Kesten, O., El Mofid, W., & Sörgel, T. (2023). Combining 3d printing and electrochemical deposition for manufacturing tailor-made 3D nickel foams with highly competitive porosity and specific surface area density.
Metals,
13(5).
https://doi.org/10.3390/met13050857
[12] He, L., Wang, P., Wang, L., Chen, M., Liu, H., & Li, J. (2023). Multifunctional polymer-metal lattice composites via hybrid additive manufacturing technology.
Micromachines,
14(12), 2191.
https://doi.org/10.3390/mi14122191
[13] Wang, J., Berardi, P., Bártolo, P. J., Thompson, G. W., & Mahtabi, M. J. (2025). Electrodeposition of nickel onto polymers: a short review of plating processes and structural properties.
Applied Sciences,
15(15), 8500.
https://doi.org/10.3390/app15158500
[14] Geng, X., Wang, M., & Hou, B. (2023). Experiment investigation of the compression behaviors of nickel-coated hybrid lattice structure with enhanced mechanical properties.
Micromachines,
14(10), 1959.
https://doi.org/10.3390/mi14101959
[15] Besharati, F., & Paydar, M. H. (2023). Fabrication of copper open cell foam by electrochemical deposition method and investigation on the effect of current intensity and plating solution on the created microstructure.
Iranian Journal of Materials Forming,
10(1), 4-12.
https://doi.org/10.22099/IJMF.2023.46551.1245
[16] SO 13314:2011. Mechanical testing of metals—Ductility testing—Compression test for porous and cellular metals. International Organization for Standardization, Geneva, Switzerland.
[17] Ashby, M. F., Evans, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W., Wadley, H. N. G., & Delale, F. (2001). Metal foams: a design guide.
Applied Mechanics Reviews,
54(6), B105-B106.
https://doi.org/10.1016/B978-0-7506-7219-1.X5000-4
[18] Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R., & Kraft, O. (2014). High-strength cellular ceramic composites with 3D microarchitecture.
Proceedings of the National Academy of Sciences of the United States of America,
111(7), 2453–2458.
https://doi.org/10.1073/pnas.1315147111