Ten years of severe plastic deformation (SPD) in Iran, part II: accumulative roll bonding (ARB)

Document Type: Research Paper

Authors

1 Department of Materials Science and Engineering, Faculty of Engineering, Shahid Chamran University, Ahvaz, Iran

2 Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran

3 Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz, Iran

4 Department of Materials Science and Engineering, School of Engineering, Shiraz University, Iran.

5 Department of Materials Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Japan

Abstract

The present paper is the second part of a previously published overview entitled “ten years of severe plastic deformation (SPD) in Iran”. Part I concentrates on the equal channel angular pressing (ECAP). In this part, the focus is on the accumulative roll bonding (ARB) because, currently, Iran is ranked the first in the world by the total number of publications in this field. In the present section, the emphasis is not on the microstructure and ultrafine-grained materials produced by ARB. Instead, its focus is on several aspects of ARB to which small attention has been paid so far. The impact and contribution of Iran to each category is evaluated in comparison to researchers from other countries. The main interest of Iranian researchers in the field of ARB is to fabricate the composite materials, particularly metal matrix composites (MMCs). The Iranian researchers were the first who introduced ARB as an effective method to produce particulate MMCs.

Keywords


[1] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scripta Materialia 39(9) (1998) 1221-1227.
[2] S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, M. Haghshenas, Accumulative roll bonding of AZ31 magnesium alloy, International Journal of Modern Physics B 22(18-19) (2008) 2833-2839.
[3] M. Shaarbaf, M.R. Toroghinejad, Nano-grained copper strip produced by accumulative roll bonding process, Materials Science and Engineering A 473(1-2) (2008) 28-33.
[4] H. Pirgazi, A. Akbarzadeh, Characterization of nanostructured aluminum sheets processed by accumulative roll bonding, International Journal of Modern Physics B 22(18-19) (2008) 2840-2847.
[5] H. Pirgazi, A. Akbarzadeh, R. Petrov, L. Kestens, Microstructure evolution and mechanical properties of AA1100 aluminum sheet processed by accumulative roll bonding, Materials Science and Engineering A 497(1-2) (2008) 132-138.
[6] H. Pirgazi, A. Akbarzadeh, R. Petrov, J. Sidor, L. Kestens, Texture evolution of AA3003 aluminum alloy sheet produced by accumulative roll bonding, Materials Science and Engineering A 492(1-2) (2008) 110-117.
[7] A.K. Talachi, M. Eizadjou, H.D. Manesh, K. Janghorban, Wear properties of 1100 Al alloy produced by accumulative roll bonding, International Journal of Modern Physics B 22(18-19) (2008) 2848-2857.
[8] S. Tamimi, M. Ketabchi, N. Parvin, The effects of accumulative roll bonding process on microstructure and mechanical properties of if steel, International Journal of Modern Physics B 22(18-19) (2008) 2866-2873.
[9] M. Eizadjou, A. Kazemi Talachi, H. Danesh Manesh, H. Shakur Shahabi, K. Janghorban, Investigation of structure and mechanical properties of multi-layered Al/Cu composite produced by accumulative roll bonding (ARB) process, Composites Science and Technology 68(9) (2008) 2003-2009.
[10] S. Tamimi, M. Ketabchi, N. Parvin, Mechanical properties of ultra fine grained aluminum and iron produced by Accumulative roll bonding method, 1 (2008), pp 193-202.
[11] H.D. Manesh, A.K. Taheri, Bond strength and formability of an aluminum-clad steel sheet, Journal of Alloys and Compounds 361(1) (2003) 138-143.
[12] M. Eizadjou, H.D. Manesh, K. Janghorban, Investigation of roll bonding between aluminum alloy strips, Materials & Design 29(4) (2008) 909-913.
[13] N. Tsuji, S. Kato, S. Ohsaki, K. Hono, Y. Minamino, Bulk mechanical alloying of Zr-Cu system by accumulative roll bonding (ARB), Metastable, Mechanically Alloyed and Nanocrystalline Materials, A. Inoue, Ed., 2005, pp 643-646.
[14] S. Ohsaki, S. Kato, N. Tsuji, T. Ohkubo, K. Hono, Bulk mechanical alloying of Cu–Ag and Cu/Zr two-phase microstructures by accumulative roll-bonding process, Acta Materialia 55(8) (2007) 2885-2895.
[15] L. Ghalandari, M.M. Moshksar, High-strength and high-conductive Cu/Ag multilayer produced by ARB, Journal of Alloys and Compounds 506(1) (2010) 172-178.
[16] A. Mozaffari, H.D. Manesh, K. Janghorban, Evaluation of mechanical properties and structure of multilayered Al/Ni composites produced by accumulative roll bonding (ARB) process, Journal of Alloys and Compounds 489(1) (2010) 103-109.
[17] A. Mozaffari, M. Hosseini, H.D. Manesh, Al/Ni metal intermetallic composite produced by accumulative roll bonding and reaction annealing, Journal of Alloys and Compounds 509(41) (2011) 9938-9945.
[18] R.N. Dehsorkhi, F. Qods, M. Tajally, Investigation on microstructure and mechanical properties of Al-Zn composite during accumulative roll bonding (ARB) process, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 530 (2011) 63-72.
[19] V.Y. Mehr, M.R. Toroghinejad, A. Rezaeian, Mechanical properties and microstructure evolutions of multilayered Al-Cu composites produced by accumulative roll bonding process and subsequent annealing, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 601 (2014) 40-47.
[20] M. Shiraly, M. Shamanian, M.R. Toroghinejad, M.A. Jazani, Effect of Tool Rotation Rate on Microstructure and Mechanical Behavior of Friction Stir Spot-Welded Al/Cu Composite, Journal of Materials Engineering and Performance 23(2) (2014) 413-420.
[21] S. Khademzadeh, M.R. Toroghinejad, F. Ashrafizadeh, Structural evolution and interdiffusion in Al/Cu nanocomposites produced by a novel manufacturing process, Metals and Materials International 18(6) (2012) 1049-1054.
[22] M. Tayyebi, B. Eghbali, Study on the microstructure and mechanical properties of multilayer Cu/Ni composite processed by accumulative roll bonding, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 559 (2013) 759-764.
[23] L. Ghalandari, M.M. Mandavian, M. Reihanian, Microstructure evolution and mechanical properties of Cu/Zn multilayer processed by accumulative roll bonding (ARB), Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 593 (2014) 145-152.
[24] M. Hosseini, N. Pardis, H. Danesh Manesh, M. Abbasi, D.-I. Kim, Structural characteristics of Cu/Ti bimetal composite produced by accumulative roll-bonding (ARB), Materials & Design 113 (2017) 128-136.
[25] O. Emadinia, S. Simoes, F. Viana, M.F. Vieira, A.J. Cavaleiro, A.S. Ramos, M.T. Vieira, Cold rolled versus sputtered Ni/Ti multilayers for reaction-assisted diffusion bonding, Welding in the World 60(2) (2016) 337-344.
[26] L. Ghalandari, M.M. Mahdavian, M. Reihanian, M. Mahmoudiniya, Production of Al/Sn multilayer composite by accumulative roll bonding (ARB): A study of microstructure and mechanical properties, Materials Science and Engineering: A 661 (2016) 179-186.
[27] M. Talebian, M. Alizadeh, Manufacturing Al/steel multilayered composite by accumulative roll bonding and the effects of subsequent annealing on the microstructural and mechanical characteristics, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 590 (2014) 186-193.
[28] M.M. Mahdavian, L. Ghalandari, M. Reihanian, Accumulative roll bonding of multilayered Cu/Zn/Al: An evaluation of microstructure and mechanical properties, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 579 (2013) 99-107.
[29] M.M.M. M. Reihanian, L. Ghalandari, A. Obeidavi, Formation of a Solid Solution Through Accumulative Roll Bonding (ARB) and Post-Heat Treatment of Multilayered Cu/Zn/Al, Iranian Journal of Materials Forming 1(1) (2014) 24-31.
[30] M. Alizadeh, M. Samiei, Fabrication of nanostructured Al/Cu/Mn metallic multilayer composites by accumulative roll bonding process and investigation of their mechanical properties, Materials & Design 56 (2014) 680-684.
[31] A.O. Moghaddam, M. Ketabchi, Y. Afrasiabi, Accumulative Roll Bonding and Post-Deformation Annealing of Cu-Al-Mn Shape Memory Alloy, Journal of Materials Engineering and Performance 23(12) (2014) 4429-4435.
[32] P.D. Motevalli, B. Eghbali, Microstructure and mechanical properties of Tr-metal Al/Ti/Mg laminated composite processed by accumulative roll bonding, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 628 (2015) 135-142.
[33] M.M. Mahdavian, H. Khatami-Hamedani, H.R. Abedi, Macrostructure evolution and mechanical properties of accumulative roll bonded Al/Cu/Sn multilayer composite, Journal of Alloys and Compounds 703 (2017) 605-613.
[34] S.V.A. Ana, M. Reihanian, B. Lotfi, Accumulative roll bonding (ARS) of the composite coated strips to fabricate multi-component Al-based metal matrix composites, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 647 (2015) 303-312.
[35] J.-M. Lee, B.-R. Lee, S.-B. Kang, Control of layer continuity in metallic multilayers produced by deformation synthesis method, Materials Science and Engineering: A 406(1–2) (2005) 95-101.
[36] M. Alizadeh, M.H. Paydar, Fabrication of Al/SiCP composite strips by repeated roll-bonding (RRB) process, Journal of Alloys and Compounds 477(1–2) (2009) 811-816.
[37] R. Jamaati, M.R. Toroghinejad, A. Najafizadeh, An alternative method of processing MMCs by CAR process, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(10-11) (2010) 2720-2724.
[38] A. Yazdani, E. Salahinejad, Evolution of reinforcement distribution in Al-B4C composites during accumulative roll bonding, Materials & Design 32(6) (2011) 3137-3142.
[39] R. Jamaati, M.R. Toroghinejad, H. Edris, Effect of SiC nanoparticles on the mechanical properties of steel-based nanocomposite produced by accumulative roll bonding process, Materials & Design 54(0) (2014) 168-173.
[40] M. Rezayat, A. Akbarzadeh, A. Owhadi, Fabrication of High-Strength Al/SiC p Nanocomposite Sheets by Accumulative Roll Bonding, Metallurgical and Materials Transactions A 43(6) (2012) 2085-2093. (in English).
[41] M. Alizadeh, M.H. Paydar, D. Terada, N. Tsuji, Effect of SiC particles on the microstructure evolution and mechanical properties of aluminum during ARB process, Materials Science and Engineering: A 540(0) (2012) 13-23.
[42] M. Rezayat, A. Akbarzadeh, A. Owhadi, Production of high strength Al–Al2O3 composite by accumulative roll bonding, Composites Part A: Applied Science and Manufacturing 43(2) (2012) 261-267.
[43] R. Jamaati, M.R. Toroghinejad, J. Dutkiewicz, J.A. Szpunar, Investigation of nanostructured Al/Al2O3 composite produced by accumulative roll bonding process, Materials & Design 35(0) (2012) 37-42.
[44] M.N. M. Reihanian, M. Jalili Shahmansouri, Effect of the particle size on the deformation and fracture behavior of Al/4vol.%Al2O3 composite produced by accumulative roll bonding (ARB), Iranian Journal of Materials Forming 2(2) (2015) 14-26.
[45] M. Karbalaei Akbari, H.R. Baharvandi, K. Shirvanimoghaddam, Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites, Materials & Design 66, Part A (2015) 150-161.
[46] M. Askarpour, Z. Sadeghian, M. Reihanian, Role of powder preparation route on microstructure and mechanical properties of Al-TiB2 composites fabricated by accumulative roll bonding (ARB), Materials Science and Engineering: A 677 (2016) 400-410.
[47] O. Ghaderi, M.R. Toroghinejad, A. Najafizadeh, Investigation of microstructure and mechanical properties of Cu–SiCP composite produced by continual annealing and roll-bonding process, Materials Science and Engineering: A 565(0) (2013) 243-249.
[48] M. Reihanian, F.K. Hadadian, M.H. Paydar, Fabrication of Al–2 vol% Al2O3/SiC hybrid composite via accumulative roll bonding (ARB): An investigation of the microstructure and mechanical properties, Materials Science and Engineering: A 607(0) (2014) 188-196.
[49] M. Naseri, A. Hassani, M. Tajally, Fabrication and characterization of hybrid composite strips with homogeneously dispersed ceramic particles by severe plastic deformation, Ceramics International 41(3) (2015) 3952-3960.
[50] A. Fattah-alhosseini, M. Naseri, M.H. Alemi, Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process, Journal of Manufacturing Processes 22 (2016) 120-126.
[51] M. Alizadeh, H.A. beni, Strength prediction of the ARBed Al/Al2O3/B4C nano-composites using Orowan model, Materials Research Bulletin 59 (2014) 290-294.
[52] S. Baazamat, M. Tajally, E. Borhani, Fabrication and characteristic of Al-based hybrid nanocomposite reinforced with WO3 and SiC by accumulative roll bonding process, Journal of Alloys and Compounds 653 (2015) 39-46.
[53] M. Reihanian, S. Fayezipour, S.M. Lari Baghal, Nanostructured Al/SiC-Graphite Composites Produced by Accumulative Roll Bonding: Role of Graphite on Microstructure, Wear and Tensile Behavior, Journal of Materials Engineering and Performance 26(4) (2017) 1908-1919.
[54] A. Yazdani, E. Salahinejad, J. Moradgholi, M. Hosseini, A new consideration on reinforcement distribution in the different planes of nanostructured metal matrix composite sheets prepared by accumulative roll bonding (ARB), Journal of Alloys and Compounds 509(39) (2011) 9562-9564.
[55] R. Jamaati, S. Amirkhanlou, M.R. Toroghinejad, B. Niroumand, Effect of particle size on microstructure and mechanical properties of composites produced by ARB process, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 528(4-5) (2011) 2143-2148.
[56] E. Bagherpour, M. Reihanian, H. Miyamoto, Tailoring particle distribution non-uniformity and grain refinement in nanostructured metal matrix composites fabricated by severe plastic deformation (SPD): a correlation with flow stress, Journal of Materials Science 52(6) (2017) 3436-3446.
[57] R. Jamaati, M.R. Toroghinejad, High-strength and highly-uniform composite produced by anodizing and accumulative roll bonding processes, Materials & Design 31(10) (2010) 4816-4822.
[58] R. Jamaati, M.R. Toroghinejad, A. Najafizadeh, Application of anodizing and CAR processes for manufacturing Al/Al2O3 composite, Materials Science and Engineering: A 527(16–17) (2010) 3857-3863.
[59] A. Shabani, M.R. Toroghinejad, A. Shafyei, Fabrication of Al/Ni/Cu composite by accumulative roll bonding and electroplating processes and investigation of its microstructure and mechanical properties, Materials Science and Engineering: A 558(0) (2012) 386-393.
[60] M. Reihanian, M. Jalili Shahmansouri, M. Khorasanian, High strength Al with uniformly distributed Al2O3 fragments fabricated by accumulative roll bonding and plasma electrolytic oxidation, Materials Science and Engineering: A 640 (2015) 195-199.
[61] H. Farajzadeh Dehkordi, M.R. Toroghinejad, K. Raeissi, Fabrication of Al/Al2O3/TiC hybrid composite by anodizing and accumulative roll bonding processes and investigation of its microstructure and mechanical properties, Materials Science and Engineering: A 585(0) (2013) 460-467.
[62] A. Ahmadi, M.R. Toroghinejad, A. Najafizadeh, Evaluation of microstructure and mechanical properties of Al/Al2O3/SiC hybrid composite fabricated by accumulative roll bonding process, Materials & Design 53(0) (2014) 13-19.
[63] V. Yousefi Mehr, A. Rezaeian, M.R. Toroghinejad, Application of accumulative roll bonding and anodizing process to produce Al–Cu–Al2O3 composite, Materials & Design 70(0) (2015) 53-59.
[64] M.R. Toroghinejad, R. Jamaati, A. Nooryan, H. Edris, Hybrid composites produced by anodizing and accumulative roll bonding (ARB) processes, Ceramics International 40(7) (2014) 10027-10035.
[65] M. Shamanian, M. Mohammadnezhad, H. Asgari, J. Szpunar, Fabrication and characterization of Al-Al2O3-ZrC composite produced by accumulative roll bonding (ARB) process, Journal of Alloys and Compounds 618 (2015) 19-26.
[66] K. Kitazono, E. Sato, K. Kuribayashi, Novel manufacturing process of closed-cell aluminum foam by accumulative roll-bonding, Scripta Materialia 50(4) (2004) 495-498.
[67] K. Kitazono, S. Nishizawa, E. Sato, T. Motegi, Effect of ARB cycle number on cell morphology of closed-cell Al-Si alloy foam, Materials Transactions 45(7) (2004) 2389-2394.
[68] K. Kitazono, Y. Kikuchi, E. Sato, K. Kuribayashi, Anisotropic compressive behavior of Al-Mg alloy foams manufactured through accumulative roll-bonding process, Materials Letters 61(8-9) (2007) 1771-1774.
[69] S. Kamimura, K. Kitazono, E. Sato, K. Kuribayashi, Application of superplastic flow to manufacturing of microcellular aluminum foams, Pricm 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing, Pts 1-5, Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han, X.S. Xie, Eds., 2005, pp 3021-3024.
[70] S.M. Hosseini, A. Habibolahzadeh, Investigation of nano-SiCp effect on microstructure and mechanical properties of Al/TiH2 foam precursor produced via ARB process, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 639 (2015) 80-88.
[71] S.M. Hosseini, A. Habibolahzadeh, V. Petráňová, J. Němeček, Influence of nano-SiCp on the foamability and microstructure of Al/TiH2 foam sheet manufactured by continual annealing and roll-bonding process, Materials & Design 97 (2016) 483-491.
[72] M.A. Zeidabady, M. Tajally, E. Emadoddin, Manufacturing of copper foams through accumulative roll bonding (ARB) process: structure and damping capacity behavior, Canadian Metallurgical Quarterly 54(2) (2015) 198-204.
[73] S. Kaneko, K. Fukuda, H. Utsunomiya, T. Sakai, Y. Saito, N. Furushiro, Ultra grain refinement of aluminium 1100 by ARB with cross rolling, Thermec'2003, Pts 1-5, T. Chandra, J.M. Torralba, T. Sakai, Eds., 2003, pp 2649-2653.
[74] Y.S. Kim, S.H. Kang, D.H. Shin, Effect of rolling direction on the microstructure and mechanical properties of accumulative roll bonding (ARB) processed commercially pure 1050 aluminum alloy, Nanomaterials by Severe Plastic Deformation, Z. Horita, Ed., 2006, pp 681-686.
[75] Y.S. Kim, S.H. Kang, D.H. Shin, Ductility enhancement of ultrafine grained commercially pure 1050 aluminum alloy by cross accumulative roll-bonding (C-ARB), 2006
[76] M. Alizadeh, Processing of Al/B4C composites by cross-roll accumulative roll bonding, Materials Letters 64(23) (2010) 2641-2643.
[77] M. Alizadeh, E. Salahinejad, Processing of ultrafine-grained aluminum by cross accumulative roll-bonding, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 595 (2014) 131-134.
[78] M. Naseri, M. Reihanian, E. Borhani, Effect of strain path on microstructure, deformation texture and mechanical properties of nano/ultrafine grained AA1050 processed by accumulative roll bonding (ARB), Materials Science and Engineering: A 673 (2016) 288-298.
[79] M. Ruppert, H.W. Hoppel, M. Goken, Influence of cross-rolling on the mechanical properties of an accumulative roll bonded aluminum alloy AA6014, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 597 (2014) 122-127.
[80] M.R.K. Ardakani, S. Amirkhanlou, S. Khorsand, Cross accumulative roll bonding A novel mechanical technique for significant improvement of stir-cast Al/Al2O3 nanocomposite properties, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 591 (2014) 144-149.
[81] M. Alizadeh, E. Salahinejad, A comparative study on metal-matrix composites fabricated by conventional and cross accumulative roll-bonding processes, Journal of Alloys and Compounds 620 (2015) 180-184.
[82] M.R.K. Ardakani, S. Khorsand, S. Amirkhanlou, M.J. Nayyeri, Application of compocasting and cross accumulative roll bonding processes for manufacturing high-strength, highly uniform and ultra-fine structured Al/SiCp nanocomposite, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 592 (2014) 121-127.
[83] H. Azzeddine, K. Tirsatine, T. Baudin, A.L. Helbert, F. Brisset, D. Bradai, Texture evolution of an Fe-Ni alloy sheet produced by cross accumulative roll bonding, Materials Characterization 97 (2014) 140-149.
[84] K. Verstraete, A.L. Helbert, F. Brisset, T. Baudin, Comparison between ARB and CARB processes on an AA5754/AA6061 composite, 6th International Conference on Nanomaterials by Severe Plastic Deformation, B. Beausir, O. Bouaziz, E. Bouzy, T. Grosdidier, L.S. Toth, Eds., 2014.
[85] K. Verstraete, A.L. Helbert, F. Brisset, A. Benoit, P. Poniard, T. Baudin, Microstructure, mechanical properties and texture of an AA6061/AA5754 composite fabricated by cross accumulative roll bonding, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 640 (2015) 235-242.
[86] S. Sahoo, S. Panda, R.K. Sabat, G. Kumar, S.C. Mishra, U.K. Mohanty, S. Suwas, Effect of pre-annealing strains on annealing texture developments in commercially pure (CP) titanium, Philosophical Magazine 95(10) (2015) 1105-1124.
[87] M. Naseri, A. Hassani, M. Tajally, An alternative method for manufacturing Al/B4C/SiC hybrid composite strips by cross accumulative roll bonding (CARB) process, Ceramics International 41(10) (2015) 13461-13469.
[88] L.F. Zeng, R. Gao, Q.F. Fang, X.P. Wang, Z.M. Xie, S. Miao, T. Hao, T. Zhang, High strength and thermal stability of bulk Cu/Ta nanolamellar multilayers fabricated by cross accumulative roll bonding, Acta Materialia 110 (2016) 341-351.
[89] H.P. Ng, T. Przybilla, C. Schmidt, R. Lapovok, D. Orlov, H.W. Hoppel, M. Goken, Asymmetric accumulative roll bonding of aluminium-titanium composite sheets, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 576 (2013) 306-315.
[90] A. Yazdani, N. Pardis, R. Hosseini, R. Ebrahimi, Strain composite strips produced by accumulative roll bonding technique, Materials Science and Engineering: A 577 (2013) 158-160.
[91] M. Naseri, M. Reihanian, E. Borhani, A new strategy to simultaneous increase in the strength and ductility of AA2024 alloy via accumulative roll bonding (ARB), Materials Science and Engineering: A 656 (2016) 12-20.
[92] S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, Role of shear strain in ultragrain refinement by accumulative roll-bonding (ARB) process, Scripta Materialia 46(4) (2002) 281-285.
[93] N. Kamikawa, T. Sakai, N. Tsuji, Effect of redundant shear strain on microstructure and texture evolution during accumulative roll-bonding in ultralow carbon IF steel, Acta Materialia 55(17) (2007) 5873-5888.
[94] H. Miyamoto, Corrosion of Ultrafine Grained Materials by Severe Plastic Deformation, an Overview, Materials Transactions 57(5) (2016) 559-572.
[95] S. Fujimoto, T. Iwata, N. Tsuji, Y. Minamino, Corrosion behavior of ultra-fine grained Al and Al-2%Cu alloy produced by accumulative roll-bonding (ARB) process, 2004
[96] W. Wei, K.X. Wei, Q.B. Du, Corrosion and tensile behaviors of ultra-fine grained Al-Mn alloy produced by accumulative roll bonding, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 454 (2007) 536-541.
[97] T. Hausol, H.W. Hoppel, M. Goken, Tailoring materials properties of UFG aluminium alloys by accumulative roll bonded sandwich-like sheets, Journal of Materials Science 45(17) (2010) 4733-4738.
[98] R. Jamaati, M.R. Toroghinejad, J.A. Szpunar, D.J. Li, Tribocorrosion Behavior of Aluminum/Alumina Composite Manufactured by Anodizing and ARB Processes, Journal of Materials Engineering and Performance 20(9) (2011) 1600-1605.
[99] A. Fattah-Alhosseini, S.O. Gashti, Corrosion Behavior of Ultra-fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution, Journal of Materials Engineering and Performance 24(9) (2015) 3386-3393.
[100] A. Fattah-alhosseini, S.O. Gashti, Passive Behavior of Ultra-Fine-Grained 1050 Aluminum Alloy Produced by Accumulative Roll Bonding in a Borate Buffer Solution, Acta Metallurgica Sinica-English Letters 28(10) (2015) 1222-1229.
[101] A. Fattah-alhosseini, S.O. Gashti, M.K. Keshavarz, Effect of Film Formation Potential on Passive Behavior of Ultra-Fine-Grained 1050 Al Alloy Fabricated via ARB Process, Journal of Materials Engineering and Performance 25(4) (2016) 1683-1689.
[102] A. Fattah-alhosseini, O. Imantalab, Effect of accumulative roll bonding process on the electrochemical behavior of pure copper, Journal of Alloys and Compounds 632 (2015) 48-52.
[103] A. Fattah-Alhosseini, O. Imantalab, Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 47A(1) (2016) 572-580.
[104] A. Fattah-alhosseini, O. Imantalab, Y. Mazaheri, M.K. Keshavarz, Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 650 (2016) 8-14.
[105] O. Imantalab, A. Fattah-alhosseini, Electrochemical and Passive Behaviors of Pure Copper Fabricated by Accumulative Roll-Bonding (ARB) Process, Journal of Materials Engineering and Performance 24(7) (2015) 2579-2585.
[106] O. Imantalab, A. Fattah-Alhosseini, M.K. Keshavarz, Y. Mazaheri, Electrochemical Behavior of Pure Copper in Phosphate Buffer Solutions: A Comparison Between Micro- and Nano-Grained Copper, Journal of Materials Engineering and Performance 25(2) (2016) 697-703.
[107] E. Darmiani, I. Danaee, M.A. Golozar, M.R. Toroghinejad, Corrosion investigation of Al-SiC nano-composite fabricated by accumulative roll bonding (ARB) process, Journal of Alloys and Compounds 552 (2013) 31-39.
[108] E. Darmiani, I. Danaee, M.A. Golozar, M.R. Toroghinejad, A. Ashrafi, A. Ahmadi, Reciprocating wear resistance of Al-SiC nano-composite fabricated by accumulative roll bonding process, Materials & Design 50 (2013) 497-502.
[109] M. Kadkhodaee, M. Babaiee, H.D. Manesh, M. Pakshir, B. Hashemi, Evaluation of corrosion properties of Al/nanosilica nanocomposite sheets produced by accumulative roll bonding (ARB) process, Journal of Alloys and Compounds 576 (2013) 66-71.
[110] A. Nikfahm, I. Danaee, A. Ashrafi, M.R. Toroghinejad, Effect of Grain Size Changes on Corrosion Behavior of Copper Produced by Accumulative Roll Bonding Process, Materials Research-Ibero-American Journal of Materials 16(6) (2013) 1379-1386.
[111] A. Nikfahm, I. Danaee, A. Ashrafi, M.R. Toroghinejad, Corrosion Behavior of Ultra Fine Grain Copper Produced by Accumulative Roll Bonding Process, Transactions of the Indian Institute of Metals 67(1) (2014) 115-121.
[112] S.M.L.B. M. Reihanian, F. Keshavarz Haddadian, M.H. Paydar, A Comparative Corrosion Study of Al/Al2O3-SiC Hybrid Composite Fabricated by Accumulative Roll Bonding (ARB), Journal of Ultrafine Grained and Nanostructured Materials 49(1) (2016) 29-35.
[113] M. Karbasi, E.K. Alamdari, Electrochemical Evaluation of Lead Base Composite Anodes Fabricated by Accumulative Roll Bonding Technique, Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 46(2) (2015) 688-699.
[114] N. Gao, C.T. Wang, R.J.K. Wood, T.G. Langdon, Tribological properties of ultrafine-grained materials processed by severe plastic deformation, Journal of Materials Science 47(12) (2012) 4779-4797.
[115] Y.S. Kim, T. Lee, K.T. Park, W.J. Kim, D.H. Shin, Dry sliding wear behavior of ultrafine grained commercial purity aluminum and low carbon steel produced by severe plastic deformation techniques, 2002
[116] Y.S. Kim, J.S. Ha, W.J. Kim, Dry sliding wear characteristics of severely deformed 6061 aluminum and AZ61 magnesium alloys, Designing, Processing and Properties of Advanced Engineering Materials, Pts 1 and 2, S.G. Kang, T. Kobayashi, Eds., 2004, pp 597-600.
[117] Y.S. Kim, J.S. Ha, D.H. Shin, The effect of microstructure on the sliding wear performance of ultrafine-grained aluminum alloys by ARB, 2004.
[118] Y.S. Kim, J.S. Ha, D.H. Shin, Sliding wear characteristics of ultrafine-grained non-strain-hardening aluminum-magnesium alloys, Pricm 5: The Fifth Pacific Rim International Conference on Advanced Materials and Processing, Pts 1-5, Z.Y. Zhong, H. Saka, T.H. Kim, E.A. Holm, Y.F. Han, X.S. Xie, Eds., 2005, pp 401-404.
[119] Y.S. Kim, T.O. Lee, D.H. Shin, Microstructural evolution and mechanical properties of ultrafine grained commercially pure 1100 aluminum alloy processed by accumulative roll-bonding (ARB), Designing, Processing and Properties of Advanced Engineering Materials, Pts 1 and 2, S.G. Kang, T. Kobayashi, Eds., 2004, pp 625-628.
[120] A.K. Talachi, M. Eizadjou, H.D. Manesh, K. Janghorban, Wear characteristics of severely deformed aluminum sheets by accumulative roll bonding (ARB) process, Materials Characterization 62(1) (2011) 12-21.
[121] M. Eizadjou, A.K. Talachi, H.D. Manesh, K. Janghorban, Sliding Wear behavior of Severely Deformed 6061 Aluminum Alloy by Accumulative Roll Bonding (ARB) Process, Nanomaterials by Severe Plastic Deformation: Nanospd5, Pts 1 and 2, J.T. Wang, R.B. Figueiredo, T.G. Langdon, Eds., 2011, pp 1107-1112.
[122] R. Jamaati, M. Naseri, M.R. Toroghinejad, Wear behavior of nanostructured Al/Al2O3 composite fabricated via accumulative roll bonding (ARB) process, Materials & Design 59 (2014) 540-549.
[123] M.M.M. M. Reihanian, L.Ghalandari, Fabrication of the Cu-Zn Multilayer and Cu-Zn Alloy by Accumulative Roll Bonding (ARB) with an Emphasis on the Wear Behavior, Iranian Journal of Materials Forming 1(2) (2014) 52-62.
[124] C.Y. Liu, Q. Wang, Y.Z. Jia, B. Zhang, R. Jing, M.Z. Ma, Q. Jing, R.P. Liu, Evaluation of mechanical properties of 1060-Al reinforced with WC particles via warm accumulative roll bonding process, Materials & Design 43(0) (2013) 367-372.
[125] Y.S. Sato, M. Urata, Y. Kurihara, S.H.C. Park, H. Kokawa, K. Ikeda, N. Tsuji, Microstructural evolution during friction stir welding of ultrafine grained Al alloys, Nanomaterials by Severe Plastic Deformation, Z. Horita, Ed., 2006, pp 169-174.
[126] Y.S. Sato, Y. Kurihara, S.H.C. Park, H. Kokawa, N. Tsuji, Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding, Scripta Materialia 50(1) (2004) 57-60.
[127] H. Fujii, L. Cui, N. Tsuji, R. Ueji, K. Nakata, K. Nogi, Isope, Mechanical properties of friction stir welds of ultrafine grained steel and other materials, Proceedings of the Fifteenth, 2005, pp 22-26.
[128] H. Fuji, R. Ueji, Y. Takada, H. Kitahara, N. Tsuji, K. Nakata, K. Nogi, Friction stir welding of ultrafine grained interstitial free steels, Materials Transactions 47(1) (2006) 239-242.
[129] I. Topic, H.W. Hoppel, M. Goken, Deformation behaviour of accumulative roll bonded and friction stir welded aluminium alloys, Nanomaterials by Severe Plastic Deformation Iv, Pts 1 and 2, Y. Estrin, H.J. Maier, Eds., 2008, pp 833-839.
[130] Y.F. Sun, H. Fujii, Y. Takada, N. Tsuji, K. Nakata, K. Nogi, Effect of initial grain size on the joint properties of friction stir welded aluminum, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 527(1-2) (2009) 317-321.
[131] G. Buffa, L. Fratini, S. Pellegrino, F. Micari, On the field variables influence on bonding phenomena during FSW processes: experimental and numerical study, Sheet Metal 2013, R.B. Clarke, A.G. Leacock, J.R. Duflou, M. Merklein, F. Micari, Eds., 2013, pp 484-491.
[132] M. Hosseini, H.D. Manesh, Immersed friction stir welding of ultrafine grained accumulative roll-bonded Al alloy, Materials & Design 31(10) (2010) 4786-4791.
[133] M. Shamanian, M. Mohammadnezhad, J. Szpunar, Texture analysis of a friction stir welded ultrafine grained Al-Al2O3 composite produced by accumulative roll-bonding, Journal of Alloys and Compounds 615 (2014) 651-656.
[134] M. Mohammadnezhad, M. Shamanian, A. Zabolian, M. Taheri, V. Javaheri, A.H. Navidpour, M. Nezakat, J.A. Szpunar, Microstructure and Crystallographic Texture Variations in the Friction-Stir-Welded Al-Al2O3-B4C Metal Matrix Composite Produced by Accumulative Roll Bonding, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 46A(12) (2015) 5747-5755.
[135] M. Fattahi, V.N. Aghaei, A.R. Dabiri, S. Amirkhanlou, S. Akhavan, Y. Fattahi, Novel manufacturing process of nanoparticle/Al composite filler metals of tungsten inert gas welding by accumulative roll bonding, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 648 (2015) 47-50.
[136] M. Fattahi, M. Mohammady, N. Sajjadi, M. Honarmand, Y. Fattahi, S. Akhayan, Effect of TiC nanoparticles on the microstructure and mechanical properties of gas tungsten arc welded aluminum joints, Journal of Materials Processing Technology 217 (2015) 21-29.
[137] K. Kitagawa, T. Akita, K. Kita, M. Gotoh, N. Takata, N. Tsuji, Structure and mechanical properties of severely deformed Cu-Cr-Zr alloys produced by accumulative roll-bonding process, Nanomaterials by Severe Plastic Deformation Iv, Pts 1 and 2, Y. Estrin, H.J. Maier, Eds., 2008, pp 791-796.
[138] S.A. Hosseini, H.D. Manesh, High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB process, Materials & Design 30(8) (2009) 2911-2918.
[139] N. Takata, S.H. Lee, N. Tsuji, Ultrafine grained copper alloy sheets having both high strength and high electric conductivity, Materials Letters 63(21) (2009) 1757-1760.
[140] Y. Miyajima, S.Y. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji, Change in electrical resistivity of commercial purity aluminium severely plastic deformed, Philosophical Magazine 90(34) (2010) 4475-4488. Pii 926814101,
[141] Y. Miyajima, S. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji, Microstructural change due to isochronal annealing in severely plastic-deformed commercial purity aluminium, Philosophical Magazine 95(11) (2015) 1139-1149.
[142] K. Nomura, Y. Miwa, Y. Takagawa, C. Watanabe, R. Monzen, D. Terada, N. Tsuji, Influence of Accumulative Roll Bonding and Cold Rolling Processes on the Precipitation Strengthening Properties for Cu-Ni-P Alloy, Journal of the Japan Institute of Metals 75(9) (2011) 509-515.
[143] C.W. Schmidt, P. Knodler, H.W. Hoppel, M. Goken, Particle Based Alloying by Accumulative Roll Bonding in the System Al-Cu, Metals 1(1) (2011) 65-78.
[144] C.W. Schmidt, M. Ruppert, H.W. Hoppel, F. Nachtrab, A. Dietrich, R. Hanke, M. Goken, Design of Graded Materials by Particle Reinforcement During Accumulative Roll Bonding, Advanced Engineering Materials 14(11) (2012) 1009-1017.
[145] C.Y. Liu, Q. Wang, Y.Z. Jia, B. Zhang, R. Jing, M.Z. Ma, Q. Jing, R.P. Liu, Effect of W particles on the properties of accumulatively roll-bonded Al/W composites, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 547 (2012) 120-124.
[146] Y. Takagawa, Y. Tsujiuchi, C. Watanabe, R. Monzen, N. Tsuji, Improvement in Mechanical Properties of a Cu-2.0mass%Ni-0.5mass%Si-0.1mass%Zr Alloy by Combining Both Accumulative Roll-Bonding and Cryo-Rolling with Aging, Materials Transactions 54(1) (2013) 1-8.
[147] I. Altenberger, H.A. Kuhn, M. Gholami, M. Mhaede, L. Wagner, Ultrafine-Grained Precipitation Hardened Copper Alloys by Swaging or Accumulative Roll Bonding, Metals 5(2) (2015) 763-776.
[148] M. Cieslar, M. Pokova, M. Zimina, J. Vesely, J. Bajer, Recrystallization in Multilayer Al99.99/AlMg3 Laminates Prepared by Accumulative Roll-Bonding, Acta Physica Polonica A 128(4) (2015) 487-490.
[149] A.H. Eslami, S.M. Zebarjad, M.M. Moshksar, Study on mechanical and magnetic properties of Cu/Ni multilayer composite fabricated by accumulative roll bonding process, Materials Science and Technology 29(8) (2013) 1000-1005.
[150] F. Daneshvar, M. Reihanian, K. Gheisari, Al-based magnetic composites produced by accumulative roll bonding (ARB), Materials Science and Engineering B-Advanced Functional Solid-State Materials 206 (2016) 45-54.
[151] M.C. Chen, H.C. Hsieh, W.T. Wu, The evolution of microstructures and mechanical properties during accumulative roll bonding of Al/Mg composite, Journal of Alloys and Compounds 416(1-2) (2006) 169-172.
[152] K. Ikeda, N. Takata, K. Yamada, F. Yoshida, H. Nakashima, N. Tsuji, Grain boundary structure in ARB processed copper, Nanomaterials by Severe Plastic Deformation, Z. Horita, Ed., 2006, pp 925-930.
[153] K. Ikeda, K. Yamada, N. Takata, F. Yoshida, H. Nakashima, N. Tsuji, Grain boundary structure of ultrafine grained pure copper fabricated by accumulative roll bonding, Materials Transactions 49(1) (2008) 24-30.
[154] A.A. Roostaei, A. Zarei-Hanzaki, M.H. Parsa, S.M. Fatemi-Varzaneh, An analysis to plastic deformation behavior of AZ31 alloys during accumulative roll bonding process, Journal of Materials Science 45(16) (2010) 4494-4500.
[155] M. Rezayat, A. Akbarzadeh, Theoretical model for evaluating the threshold reduction in roll bonding of Al/Al2O3/Al laminations, Metals and Materials International 18(5) (2012) 827-832.
[156] M. Reihanian, E. Bagherpour, M.H. Paydar, Particle distribution in metal matrix composites fabricated by accumulative roll bonding, Materials Science and Technology 28(1) (2012) 103-108.
[157] M. Reihanian, E. Bagherpour, M.H. Paydar, On the achievement of uniform particle distribution in metal matrix composites fabricated by accumulative roll bonding, Materials Letters 91 (2013) 59-62.
[158] M. Reihanian, M. Naseri, An analytical approach for necking and fracture of hard layer during accumulative roll bonding (ARB) of metallic multilayer, Materials & Design 89 (2016) 1213-1222.
[159] N.V. Govindaraj, J.G. Frydendahl, B. Holmedal, Layer continuity in accumulative roll bonding of dissimilar material combinations, Materials & Design 52 (2013) 905-915.
[160] H.L. Yu, A.K. Tieu, C. Lu, X. Liu, A. Godbole, H.J. Li, C. Kong, Q.H. Qin, A deformation mechanism of hard metal surrounded by soft metal during roll forming, Scientific Reports 4 (2014), 5017.