[1] K. Kiani, Free vibration of conducting nanoplates exposed to unidirectional in-plane magnetic fields using nonlocal shear deformable plate theories, Physica E: Low-dimensional Systems and Nanostructures, 57(2014) 179–192.
[2] Y. Leng, J. Zheng, J. Qu and X. Li, Thermal stability and magnetic anisotropy of nickel nanoplates, Journal of Materials Science, 44, 17(2009) 4599-4603.
[3] J. Klinovaja, M. J. Schmidt, B. Braunecker and D. Loss (2011). Carbon nanotubes in electric and magnetic fields, Phys. Rev. B, 84(2011) 085452.
[4] J. Kono, R. J. Nicholas and S. Roche, High magnetic field phenomena in carbon nanotubes, Carbon Nanotubes Topics in Applied Physics, 111(2008) 393-421
[5] A. Ghorbanpour Arani, A. Jalilvand and R. Kolahchi, Wave propagation of magnetic nanofluid-conveying double-walled carbon nanotubes in the presence of longitudinal magnetic field, Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems (2013) 1740349913488575.
[6] K.L. Metlov and K.Y. Guslienko, Stability of magnetic vortex in soft magnetic nano-sized circular cylinder, Journal of Magnetism and Magnetic Materials, 242–245(2002) Part 2, 1015–1017
[7] S. Li, H. J. Xie and X. Wang, Dynamic characteristics of multi-walled carbon nanotubes under a transverse magnetic field, Bull. Mater. Sci., 34, 1(2011) 45–52.
[8] B.K. Jang, Y. Sakka and S.K. Woo, Alignment of carbon nanotubes by magnetic fields and aqueous dispersion, J. Phys.: Conf. Ser.( 2009) 156 012005.
[9] T. Murmu, M.A. McCarthy & S. Adhikari, In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach, Composite Structures, 96(2013) 57–63.
[10] D. Yi, T.C. Wang and S. Chen, New strain gradient theory and analysis, Acta Mechanica Solida Sinica, 22 (2009), 45-52.
[11] E.C. Aifantis and H. Askes, Gradient elasticity and flexural wave dispersion in carbon nanotubes, Physical Review B, 80(2009). 195412.
[12] P. Beskou and D. E. Beskos, Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates, Arch Appl Mech, 78(2008): 625–635. DOI 10.1007/s00419-007-0166-5.
[13] T. Murmu, M.A. McCarthy and S. Adhikari, In-plane magnetic field affected transverse vibration of embedded single-layer graphene sheets using equivalent nonlocal elasticity approach. Composite Structures, 96(2013) 57–63.
[14] Y.Z. Wang, F.M. Li and K. Kishimoto, Scale effects on flexural wave propagation in nanoplate embedded in elastic matrix with initial stress, Appl Phys A, 99(2010) 907–911. DOI 10.1007/s00339-010-5666-4.
[15] M. R. Nami and M. Janghorban, Wave propagation in rectangular nanoplates based on strain gradient theory with one gradient parameter with considering initial stress. Modern Physics Letters B, (2014), DOI: 10.1142/S0217984914500213.
[16] M. R. Nami and M. Janghorban, Static analysis of rectangular nanoplates using Trigonometric shear deformation theory based on nonlocal elasticity theory. Beilstein Journal of Nanotechnology, 4(2013) 968-973.
[17] Nami, M. R. and M. Janghorban, Static analysis of rectangular nanoplates using exponential shear deformation theory based on strain gradient elasticity theory, Iranian Journal of Materials Forming, 1(2014) 1-13.
[18] M.R. Nami, M. Janghorban and M. Damadam, Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory, Aerospace Science and Technology, 41(2015) 7-15.