Plastic Deformation Modeling of Foam-Filled Tubes with Multi-Layer Foams During Compression Loading

Authors

1 School of metallurgy and Materials Engineering, Amirkabir university of technology University, Tehran, Iran

2 materials and metallurgical engineering Amirkabir University

Abstract

The purpose of this paper is to investigate the work hardening behavior and energy absorption characteristic of metallic foams and functionally graded foam filled tubes, including single-, double- and triple-layer foams. Closed-cell A356 alloy and pure zinc foams are fabricated by casting method. The results illustrate that the metallic foams show partially brittle compressive deformation associated with cell walls’ bending and tearing. A nonlinear asymptotic model, , is proposed to represent the hardening behavior of metallic foams and graded foam filled tubes as a function of relative density. The development of a complementary model,               , leads to a more accurate estimation of crushing response considering the stress oscillations, particularly for the A356 foam with high degrees of oscillation and multi-layered structures containing distinct plateau regions. Therefore, the present model is fairly consistent with the experimental results. Greater density and strength of the zinc foam compared to those of the A356 foam cause the highest total energy absorption of 581 J in the zinc foam filled tube and the highest specific energy absorption of 459.2 J/(g/cm3) in the A356 foam filled tube. The presence of zinc foam results in the decrease of specific energy absorption. However, it plays a dominant role in adjusting the crash features of graded structures. The compressive properties of multi-layered structures can be controlled by varying the number and material of the layers at constant geometric features.

Keywords


[1] M. G. Nava, A. Cruz-Ramirez, M. A. S. Rosales, V. H. Gutirrez-Perez, A. Sanchez-Martinez: J. Alloys Compd 698 (2017) 1009-1017.
[2] D. K. Rajak, L. A. Kumaraswamidhas, S. Das, S. Senthil Kumaran: J. Alloys Compd 656 (2016) 218-225.
[3] M. A. Islam, A.D. Brown, P. J. Hazell, M. A. Kader, J. P. Escobedo, M. Saadatfar, S. Xu, D. Ruan, M. Turner: J. Alloys Compd 114 (2018) 111-122.
[4] X. Liu, J. Zhang, Q. Fang, H. Wu, Y. Zhang: Int. J. Impact Eng 110 (2016) 382-394.
[5] A. Heydari Astaraie, H. R. Shahverdi, S. H. Elahi: Trans. Nonferrous Met. Soc. China 24 (2014) 162-169.
[6] L. Pan, Y. Yang, M. U. Ahsan, D.D. Luong, N. Gupta, A. Kumar, Predeep K. Rohatgi: Mater. Sci. Eng., A 731 (2018) 413-422.
[7] Y. Sirong, L. Jiaan, L. Yanru, L. Yaohui: Mater. Sci. Eng., A 457(2007) 325-328.
[8] D. P. Mondal, M.D. Goel, N. Badge, N. Jha, S. Sahu, A.K. Barnwal: Mater. Des 57 (2014) 315-324.
[9] N. Wang, E. Maire, Y. Cheng, Y. Amani, Y. Li, J. Adrien, X. Chen: Mater. Charact 138 (2018) 296-307.
[10] Manoj, D. M. Afzal Khan, D.P Mondal: Mater. Sci. Eng., A 731 (2018) 324-330.
[11] A. G. Hanssen, M. Langseth, O.S. Hopperstad: Int. J. Impact Eng 24 (2000) 347-383.
[12] A. Baroutaji, M. Sajjia, A-G. Olabi: Thin Walled Struct 118 (2017) 137-163.
[13] J. Bi, H. Fang, Q. Wang, X. Ren: Finite Elem. Anal. Des 46 (2010) 698-709.
[14] C. J. Zhang, Y. Feng, X.B. Zhang: Trans. Nonferrous Met. Soc. China 20 (2010) 1380-1386.
[15] M. D. Goel: Thin Walled Struct 90 (2015) 1-11.
[16] Y. Hangai, K. Takahashi, T. Utsunomiya, S. Kitahara, O. Kuwazuru, N. Yoshikawa: Mater. Sci. Eng., A 534 (2012) 716-719.
[17] Y. Hangai, T. Morita, T. Utsunomiya: Mater. Sci. Eng., A 696 (2017) 544-551.
[18] Y. Hangai, Y. Oba, S. Koyama, T. Utsunomiya: Metall. Mater. Trans. A 42 (2011) 3585-3589.
[19] H. Bayani and S.M.H. Mirbagheri: Iran. J. Mater. Form 3 (2016) 38-54.
[20] J. Liu, S. Yu, X. Zhu, M. Wei. Y. Luo, Y. Liu: J. Alloys Compd 476 (2009) 220-225.
[21] S. M. H. Mirbagheri, H. Vali, H. Soltani, Treatment of Closed-Cell A356 + 4 wt.% Cu + 2 wt.% Ca Foam and Its Effect on the Foam Mechanical Behavior, Journal of  Materials Engineering and Performanc 26 (2017) 14–27.
[22] N. Movahedi1, S. M. H. Mirbagheri, and S. R. Hoseini, Effect of Foaming Temperature on the Mechanical Properties of Produced Closed-Cell A356Aluminum Foams with Melting Method. Met. Mater. Int 20 (2014) 757-763.
[23] S. Mohammad Hossein Mirbagheri, Mohammad Javad Khajehali, Effect of Fe additive on plastic deformation for crush-boxes with closed-cell metal foams, Part II: Al-Composite Foam-Filled brass tubes Compression Response,  Iran. J. Mater. Form 1 (2014) 23-31.
[24] W. F. Hosford, Fundamentals of Engineering Plasticity, Cambridge University Press, London (2013).
[25] H. Bayani, S. M. H. Mirbagheri, Strain-hardening during compression of closed-cell Al/Si/SiC + (TiB2 & Mg) foam, Materials Charactization 113 (2016) 168-179.