Hot Workability and Processing Map of High Gd Content Mg-Gd-Zn-Zr-Nd Alloy

Document Type : Research Paper

Authors

1 Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran, Iran

2 Department of Materials Science and Engineering, University of Bonab, ‎Bonab, Iran

Abstract

Hot workability of as-extruded high Gd content Mg-5Gd-0,5Zn-0.5Zr-2.5Nd alloy was investigated using the hot compression test in a temperature range of 300-500 °C and strain rates of 0.001-1s-1. Hot workability assessment was conducted by capturing microstructural evolution of high temperature deformed samples, and by constructing power dissipation and instability maps. Using experimental data of hot compression tests, the power dissipation map of the alloy was constructed, in which a domain of dynamic recrystallization (DRX) occurred at the temperature range of 350-450 °C and strain rate of 0.001-0.1 s-1, representing the optimum hot working window. Furthermore, the processing map of the alloy was constructed, and flow instability regions were also indicated based on the Ziegler's flow instability criterion.

Keywords


[1] S. Jayasathyakawin, M. Ravichandran, N. Baskar, C.A. Chairman, R. Balasundaram, Mechanical properties and applications of Magnesium alloy–Review, Materials Today: Proceedings  (2020).
[2] Z. Yu, C. Xu, J. Meng, X. Zhang, S. Kamado, Microstructure evolution and mechanical properties of as-extruded Mg-Gd-Y-Zr alloy with Zn and Nd additions, Materials Science and Engineering: A 713 (2018) 234-243.
[3] Y. Luo, Y. Wu, Q. Deng, Y. Zhang, J. Chen, L. Peng, Microstructures and mechanical properties of Mg-Gd-Zn-Zr alloys prepared by spark plasma sintering, Journal of Alloys and Compounds 820 (2020) 153405.
[4] T. Xu, Y. Yang, X. Peng, J. Song, F. Pan, Overview of advancement and development trend on magnesium alloy, Journal of Magnesium and Alloys 7 (3) (2019) 536-544.
[5] A. Arslan Kaya, Fundamentals of Magnesium Alloy Metallurgy, Woodhead Publishing Limited, 2013.
[6] T. Al-Samman, Modification of texture and microstructure of magnesium alloy extrusions by particle-stimulated recrystallization, Materials  Science and Engineering A-S 560 (2013) 561-566.
[7] L.W.F. Mackenzie, M.O. Pekguleryuz, The recrystallization and texture of magnesium-zinc-cerium alloys, Scripta Materialia 59 (2008) 665-668.
[8] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, W.J. Ding, Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) alloy during isothermal aging at 250°C, Journal of Alloys and Compounds 421(1) (2006) 309-313.
[9] N. Ma, Q. Peng, J. Pan, H. Li, W. Xiao, Effect of microalloying with rare-earth on recrystallization behavior and damping properties of Mg sheets, Journal of Alloys and Compounds 592 (2014) 24-34.
[10] L. Gao, R. Chen, E. Han, Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys, Journal of Alloys and Compounds 481(1-2) (2009) 379-384.
[11] J. Gröbner, A. Kozlov, X.Y. Fang, S.M. Zhu, J.F. Nie, M.A. Gibson, R. Schmid-Fetzer, Phase equilibria and transformations in ternary Mg-Gd-Zn alloys, Acta materialia 90 (2015) 400-416.
[12] A. Kula, X. Jia, R. K. Mishra, M. Niewczas, Mechanical Properties of Mg-Gd and Mg-Y Solid Solutions, Metallurgical and Materials Transactions B 47 (2016) 3333–3342.
[13] J. Liu, L.X. Yang, C.Y. Zhang, B. Zhang, T. Zhang, Y. Li, K.M. Wu, F.H. Wang, Role of the LPSO structure in the improvement of corrosion resistance of Mg-Gd-Zn-Zr alloys, Journal of Alloys and Compounds 782 (2019) 648-658.
[14] J. D. Robson, C. Paa-Rai, The interaction of grain refinement and ageing in magnesium-zinc–zirconium (ZK) alloys, Acta Materialia 95 (2015) 10-19.
[15] C. Wang, G. Wu, E.J. Lavernia, W. Ding, Influences of heat treatment on microstructural evolution and tensile behavior of squeeze-cast Mg-Gd-Y-Zr alloy, Journal of Materials Science 52 (4) (2017) 1831-1846.
[16] T. Honma, T. Ohkubo, S. Kamado, K. Hono, Effect of Zn additions on the age-hardening of Mg-2.0 Gd-1.2 Y-0.2 Zr alloys, Acta Materialia 55(12) (2007) 4137-4150.
[17] H. Liu, Y. Chen, Y. Tang, S. Wei, G. Niu, The microstructure, tensile properties, and creep behavior of as-cast Mg (1–10)% Sn alloys, Journal of Alloys and Compounds 440 (2007) 122-126.
[18] P. Poddar, K. Sahoo, S. Mukherjee, A.K. Ray, Creep behavior of Mg-8% Sn and Mg-8% Sn-3% Al-1% Si alloys, Materials Science and Engineering: A 545 (2012) 103-110.
[19] D.H. Kim, J.Y. Lee, H.K. Lim, J.S. Kyeong, W.T. Kim, D.H. Kim, The effect of microstructure evolution on the elevated temperature mechanical properties in Mg-Sn-Ca system, Materials Transactions 49 (2008) 2405-2413.
[20] X. Luo, L. Kang, Q. Li, Y. Chai, Microstructure and hot compression deformation of the as-cast Mg-5.0 Sn-1.5 Y-0.1 Zr alloy, Applied Physics A 120(2) (2015) 699-705.
[21] S.H. Park, J.-G. Jung, Y.M. Kim, B.S. You, A new high-strength extruded Mg-8Al-4Sn-2Zn alloy, Materials Letters 139 (2015) 35-38.
[22] K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig, Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets, Scripta Materialia 63 (2010) 725-730.
[23] X. Jin, W. Xu, Z. Yang, C. Yuan, D. Shan, B. Teng, B.C. Jin, Analysis of abnormal texture formation and strengthening mechanism in an extruded Mg-Gd-Y-Zn-Zr alloy, Journal of Materials Science & Technology 45 (2020) 133-145.
[24] X. Heng, Y. Zhang, W. Rong, Y. Wu, L. Peng, A super high-strength Mg-Gd-Y-Zn-Mn alloy fabricated by hot extrusion and strain aging, Materials and Design169 (2019) 107666.
[25] J. Zhang, Zh. Kang, F. Wang, Mechanical properties and biocorrosion resistance of the Mg-Gd-Nd-Zn-Zr alloy processed by equal channel angular pressing, Materials Science and Engineering: C 68 (2016) 194-197.
[26] X. Xia, Q. Chen, K. Zhang, Z. Zhao, M. Ma, X. Li, Y. Li, Hot deformation behavior and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy, Materials Science and Engineering: A 587 (2013) 283-290.
[27] Dieter GE Workability testing techniques. American Society for Metals, Ohio, 1984.
[28] R. Ebrahimi, A. Najafizadeh, A new method for evaluation of friction in bulk metal forming, Journal of Materials Processing Technology 152 (2004) 136-143.
[29] Z. Zhang, Z. Yan, Y. Du, G. Zhang, J. Zhu, L. Ren, Y. Wang, Hot deformation behavior of homogenized Mg-13.5 Gd-3.2 Y-2.3 Zn-0.5 Zr alloy via hot compression tests, Materials 11 (2018) 2282.
[30] L. Li, X. Zhang, Hot compression deformation behavior and processing parameters of a cast Mg-Gd-Y-Zr alloy, Materials Science and Engineering: A 528(3) (2011) 1396-1401.
[31] X. Xia, Q. Chen, K. Zhang, Z. Zhao, M. Ma, X. Li, Y. Li, Hot deformation behavior and processing map of coarse-grained Mg-Gd-Y-Nd-Zr alloy, Materials Science and Engineering: A 587 (2013) 283-290.
[32] C. Wang, Y. Liu, T. Lin, T. Luo, Y. Zhao, H. Hou, Y. Yang, Hot compression deformation behavior of Mg-5Zn-3.5 Sn-1Mn-0.5 Ca-0.5 Cu alloy, Materials Characterization 157 (2019) 109896.
[33] C. Sellars, W. Tegart, Relationship between strength and structure in deformation at elevated temperatures, Mem Sci Rev Met 63(9) (1966) 731-745.
[34] M. Aghaie-Khafri, N. Golarzi, Dynamic and metadynamic recrystallization of Hastelloy X superalloy, Journal of Materials Science 43 (2008) 3717-3724.
[35] M.H. Barezban, R. Roumina, H. Mirzadeh, R. Mahmudi, Effect of Gd on dynamic recrystallization behavior of magnesium during hot compression, Journal of alloys and compounds, 791  (2019) 1200-1206.
[36] G. Ebrahimi, A.R. Maldar, R. Ebrahimi, A. Davoodi, Effect of thermomechanical parameters on dynamically recrystallized grain size of AZ91 magnesium alloy, Journal of alloys and compounds 509(6) (2011) 2703-2708.
[37] Z.Y. Cai, C.j. Che, R.H. Chang, L.R. Cheng, Q.M. Chen, Study on the constitutive behavior and hot deformation characteristic of Mg–4Sm–2Zn–0.5 Zr Alloy, International Journal of Precision Engineering and Manufacturing, 20(3) (2019) 407-415.
[38] Prasad, Y., K. Rao, and S. Sasidhar, Hot working guide: a compendium of processing maps, ASM international, 2015.
[39] M. Saadati, R.A. Khosroshahi, G. Ebrahimi, M. Jahazi, Twin-assisted precipitation during hot compression of an Mg-Gd-Zn-Zr magnesium alloy, Materials Science and Engineering: A 706 (2017) 142-152.
[40] X.-L. Hou, Y. Li, P. Lv, J. Cai, L. Ji, Q.F. Guan, Hot deformation behavior and microstructure evolution of a Mg-Gd-Nd-Y-Zn alloy, Rare Metals 35(7) (2016) 532-536.
[41] S. Anbu Selvan, S. Ramanathan, Hot workability of as-cast and extruded ZE41A magnesium alloy using processing maps, Transactions of Nonferrous Metals Society of China 21(2) (2011) 257-264.
[42] Y. Wang, Q. Pan, Y. Song, C. Li, Z. Li, Hot deformation and processing maps of X-750 nickel-based superalloy, Materials & Design 51 (2013) 154-160.
[43] M. Aghaie-Khafri, F. Adhami, Hot deformation of 15-5 PH stainless steel, Materials Science and Engineering: A 527 (2010) 1052-1057.
[44] C. Sun, G. Liu, Q. Zhang, R. Li, L. Wang, Determination of hot deformation behavior and processing maps of IN 028 alloy using isothermal hot compression test, Materials Science and Engineering: A 595 (2014) 92-98.
[45] Y.B. Tan, L.H. Yang, C. Tian, W.C. Liu, R.P. Liu, X.Y. Zhang, Processing maps for hot working of 47Zr-45Ti-5Al-3V alloy, Materials Science and Engineering: A 597 (2014) 171-177.
[46] S.V.S. Narayana Murty, B. Nageswara Rao, Development and validation of a processing map for AFNOR 7020 aluminium alloy, Materials Science and Technology 20 (2004) 772-782.
[47] O. Salari, A. Abdi, M. Aghaie-Khafri, A new criterion for construction of instability maps in hot deformation, Materials Performance and Characterization 8(5) (2019) 856-868.
 [48] E. Pu, W. Zheng, J. Xiang, Z. Song, J. Li, Hot deformation characteristic and processing map of superaustenitic stainless steel S32654, Materials Science and Engineering: A 598 (2014) 174.