[1] H. Toutanji, S. Dempsey, Stress modeling of pipelines strengthened with advanced composites materials, Thin-Walled Structures, 39(2) (2001) 153-165.
[2] Ş. Çitil, Y.A. Ayaz, Ş. Temiz, M.D. Aydin, Mechanical behaviour of adhesively repaired pipes subject to internal pressure, International Journal of Adhesion and Adhesives, 75 (2017) 88-95.
[3] M. Elchalakani, A. Karrech, H. Basarir, M.F. Hassanein, S. Fawzia, CFRP strengthening and rehabilitation of corroded steel pipelines under direct indentation, Thin-Walled Structures, 119 (2017) 510-521.
[4] W.K. Goertzen, M.R. Kessler, Dynamic mechanical analysis of carbon/epoxy composites for structural pipeline repair, Composites: Part B, 38(1) (2007) 1-9.
[5] J.M. Duell, J.M. Wilson, M.R. Kessler, Analysis of a carbon composite overwrap pipeline repair system, International Journal of Pressure Vessels and Piping, 85(11) (2008) 782-788.
[6] H.N. Yu, S.S. Kim, I.U. Hwang, D.G. Lee, Application of natural fiber reinforced composites to trenchless rehabilitation of underground pipes, Composite Structures, 86(1-3) (2008) 285-290.
[7] H.S. da Costa-Mattos, J.M.L. Reis, R.F. Sampaio, V.A. Perrut, An alternative methodology to repair localized corrosion damage in metallic pipelines with epoxy resins, Materials & Design, 30(9) (2009) 3581-3591.
[8] J. Lukács, G. Nagy, I. Török, J. Égert, B. Pere, Experimental and numerical investigations of external reinforced damaged pipelines, Procedia Engineering, 2(1) (2010) 1191-1200.
[9] A. Shouman, F. Taheri, Compressive strain limits of composite repaired pipelines under combined loading states, Composite Structures, 93(6) (2011) 1538-1548.
[10] C.C. Lam, J.J. Cheng, C.H. Yam, Finite element study of cracked steel circular tube repaired by FRP patching, Procedia Engineering, 14 (2011) 1106-1113.
[11] H.S. da Costa Mattos, L.M. Paim, J.M.L. Reis, Analysis of burst tests and long-term hydrostatic tests in produced water pipelines, Engineering Failure Analysis, 22 (2012) 128-140.
[12] T.S. Mally, A.L. Johnston, M. Chann, R.H. Walker, M.W. Keller, Performance of a carbon-fiber/epoxy composite for the underwater repair of pressure equipment, Composite Structures, 100 (2013) 542-547.
[13] M. Shamsuddoha, M.M. Islam, T. Aravinthan, A. Manalo, K.T. Lau, Effectiveness of using fibre-reinforced polymer composites for underwater steel pipeline repairs, Composite Structures, 100 (2013) 40-54.
[14] N. Saeed, H. Baji, H. Ronagh, Reliability of corroded thin walled pipes repaired with composite overwrap, Thin-Walled Structures, 85 (2014) 201-206.
[15] M. Meriem-Benziane, S.A. Abdul-Wahab, H. Zahloul, B. Babaziane, M. Hadj-Meliani, G. Pluvinage, Finite element analysis of the integrity of an API X65 pipeline with a longitudinal crack repaired with single-and double-bonded composites, Composites Part B, 77 (2015) 431-439.
[16] M. Kara, M. Uyaner, A. Avci, Repairing impact damaged fiber reinforced composite pipes by external wrapping with composite patches, Composite Structures, 123 (2015) 1-8.
[17] L.P. Djukic, W.S. Sum, K.H. Leong, W.D. Hillier, T.W. Eccleshall, A.Y. Leong, Development of a fibre reinforced polymer composite clamp for metallic pipeline repairs, Materials & Design, 70 (2015) 68-80.
[18] N.R.F. Rohem, L.J. Pacheco, S. Budhe, M.D. Banea, E.M. Sampaio, S. De Barros, Development and qualification of a new polymeric matrix laminated composite for pipe repair, Composite Structures, 152 (2016) 737-745.
[19] R.R. Das, N. Baishya, Failure analysis of bonded composite pipe joints subjected to internal pressure and axial loading, Procedia Engineering, 144 (2016) 1047-1054.
[20] K.S. Woo, J.S. Ahn, S.H. Yang, Cylindrical discrete-layer model for analysis of circumferential cracked pipes with externally bonded composite materials, Composite Structures, 143 (2016) 317-323.
[21] M. Fakoor, S.M. Navid Ghoreishi, N. Mehri Khansari, Investigation of composite coating effectiveness on stress intensity factors of cracked composite pressure vessels, Journal of Mechanical Science and Technology, 30(7) (2016) 3119-3126.
[22] M. Elchalakani, Rehabilitation of corroded steel CHS under combined bending and bearing using CFRP, Journal of Constructional Steel Research, 125 (2016) 26-42.
[23] M. Witek, Gas transmission pipeline failure probability estimation and defect repairs activities based on in-line inspection data, Engineering Failure Analysis, 70 (2016) 255-272.
[24] A.A. Abd-Elhady, H.E.D.M. Sallam, M.A. Mubaraki, Failure analysis of composite repaired pipelines with an inclined crack under static internal pressure, Procedia Structural Integrity, 5 (2017) 123-130.
[25] H. Zarrinzadeh, M.Z. Kabir, A. Deylami, Crack growth and debonding analysis of an aluminum pipe repaired by composite patch under fatigue loading, Thin-Walled Structures, 112 (2017) 140-148.
[26] M.W. Junior, J.M.L. Reis, H.S. da Costa Mattos, Polymer-based composite repair system for severely corroded circumferential welds in steel pipes, Engineering Failure Analysis, 81 (2017) 135-144.
[27] J. Liu, M. Qin, Q. Zhao, L. Chen, P. Liu, J. Gao, Fatigue performances of the cracked aluminum-alloy pipe repaired with a shaped CFRP patch, Thin-Walled Structures, 111 (2017) 155-164.
[28] E. Mahdi, E. Eltai, Development of cost-effective composite repair system for oil/gas pipelines, Composite Structures, 202 (2018) 802-806.
[29] S. Budhe, M.D. Banea, S. de Barros, N.R.F. Rohem, Assessment of failure pressure of a GFRP composite repair system for wall loss defect in metallic pipelines, Materials Science and Engineering Technology, 49(7) (2018) 902-911.
[30] R. Rafiee, M.A. Torabi, S. Maleki, Investigating structural failure of a filament-wound composite tube subjected to internal pressure: experimental and theoretical evaluation, Polymer Testing, 67 (2018) 322-330.
[31] K.S. Lim, S.N.A. Azraai, N. Yahaya, N.M. Noor, L. Zardasti, J.H.J. Kim, Behaviour of steel pipelines with composite repairs analysed using experimental and numerical approaches, Thin-Walled Structures, 139 (2019) 321-333.