[1] Gabor, R., & Dos Santos, J. F. (2013). Friction stir welding development of aluminium alloys for structural connections. Proceedings of the Romanian Academy, Series A, 14(1), 64-71.
[2] Esmaeili, A., Rajani, H. Z., Sharbati, M., Givi, M. B., & Shamanian, M. (2011). The role of rotation speed on intermetallic compounds formation and mechanical behavior of friction stir welded brass/aluminum 1050 couple. Intermetallics, 19(11), 1711-1719.
https://doi.org/10.1016/j.intermet.2011.07.006
[3] Bisadi, H., Tavakoli, A., Sangsaraki, M. T., & Sangsaraki, K. T. (2013). The influences of rotational and welding speeds on microstructures and mechanical properties of friction stir welded Al5083 and commercially pure copper sheets lap joints. Materials & Design, 43, 80-88.
https://doi.org/10.1016/j.matdes.2012.06.029
[5] Park, S. K., Hong, S. T., Park, J. H., Park, K. Y., Kwon, Y. J., & Son, H. J. (2010). Effect of material locations on properties of friction stir welding joints of dissimilar aluminium alloys. Science and Technology of Welding and Joining, 15(4), 331-336.
https://doi.org/10.1179/136217110X12714217309696
[6] Abdollah-Zadeh, A., Saeid, T., & Sazgari, B. (2008). Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. Journal of Alloys and Compounds, 460(1-2), 535-538.
https://doi.org/10.1016/j.jallcom.2007.06.009
[7] Lee, C. Y., Lee, W. B., Kim, J. W., Choi, D. H., Yeon, Y. M., & Jung, S. B. (2008). Lap joint properties of FSWed dissimilar formed 5052 Al and 6061 Al alloys with different thickness. Journal of Materials Science, 43, 3296-3304.
https://doi.org/10.1007/s10853-008-2525-1
[8] RajKumar, V., VenkateshKannan, M., Sadeesh, P., Arivazhagan, N., & Ramkumar, K. D. (2014). Studies on effect of tool design and welding parameters on the friction stir welding of dissimilar aluminium alloys AA 5052–AA 6061. Procedia Engineering, 75, 93-97.
https://doi.org/10.1016/j.proeng.2013.11.019
[9] Ravikumar, S. Rao,V. S. Pranesh, R.V. (2014). Effect of process parameters on mechanical properties of friction stir welded dissimilar materials between AA6061-T651 and AA7075-T651 alloys, International Journal of Advanced Mechanical Engineering. 4(1), 101-114.
[10] Al-Roubaiy, A. O., Nabat, S. M., & Batako, A. D. (2014). Experimental and theoretical analysis of friction stir welding of Al–Cu joints. The International Journal of Advanced Manufacturing Technology, 71, 1631-1642.
https://doi.org/10.1007/s00170-013-5563-z
[11] Xue, P., Xiao, B. L., Ni, D. R., & Ma, Z. Y. (2010). Enhanced mechanical properties of friction stir welded dissimilar Al–Cu joint by intermetallic compounds. Materials Science and Engineering: A, 527(21-22), 5723-5727.
https://doi.org/10.1016/j.msea.2010.05.061
[12] Cavaliere, P., DeSantis, A., Panella, F., & Squillace, A. (2009). Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Materials & Design, 30(3), 609-616.
https://doi.org/10.4028/www.scientific.net/MSF.519-521.1163
[14] Mehta, K. P., & Badheka, V. J. (2015). Influence of tool design and process parameters on dissimilar friction stir welding of copper to AA6061-T651 joints. The International Journal of Advanced Manufacturing Technology, 80, 2073-2082.
https://doi.org/10.1007/s00170-015-7176-1
[15] Torabi, A. R., Kalantari, M. H., & Aliha, M. R. M. (2018). Fracture analysis of dissimilar Al‐Al friction stir welded joints under tensile/shear loading. Fatigue & Fracture of Engineering Materials & Structures, 41(9), 2040-2053.
https://doi.org/10.1111/ffe.12841
[16] Nishida, H., Ogura, T., Hatano, R., Kurashima, H., Fujimoto, M., & Hirose, A. (2017). Fracture toughness and fatigue crack behaviour of A3003/SUS304 lap friction stir welded joints. Welding International, 31(4), 268-277.
https://doi.org/10.1080/09507116.2016.1223206