[1] Botelho, E. C., Silva, R. A., Pardini, L. C., & Rezende, M. C. (2006). A review on the development and properties of continuous fiber/epoxy/aluminum hybrid composites for aircraft structures. Materials Research, 9(3), 247–256.
https://doi.org/10.1590/S1516-14392006000300002
[2] Alderliesten, R., & Benedictus, R. (2008). Fiber/metal composite technology for future primary aircraft structures. Journal of Aircraft, 45(4), 1182–1189.
https://doi.org/10.2514/1.33946
[3] Chang, P. Y., Yeh, P. C., & Yang, J. M. (2008). Fatigue crack initiation in hybrid boron/glass/aluminum fiber metal laminates. Materials Science and Engineering: A, 496(1–2), 273–280.
https://doi.org/10.1016/j.msea.2008.07.041
[4] Xie, M., Zhan, L., Ma, B., & Hui, Sh. (2024). Classification of fiber metal laminates (FMLs) adhesion theories and methods for improving interfacial adhesion. Thin-Walled Structures, 198, 111744.
https://doi.org/10.1016/j.tws.2024.111744
[5] Castrodeza, E. M., Bastian, F. L., & Perez Ipina, J. E. (2005). Fracture toughness of unidirectional fiber–metal laminates: crack orientation effect. Engineering Fracture Mechanics, 72(14), 2268–2279.
https://doi.org/10.1016/j.engfracmech.2005.02.006
[6] Cavallini, G., Davi, G., & Milazzo, A. (2006). Boundary element modeling and analysis of adhesive bonded structural joints. Electronic Journal of Boundary Elements, 4(1), 31–48.
https://doi.org/10.14713/ejbe.v4i1.773
[7] Naik, R. K., Das, A. K., Mahale, P. R., Panda, S. K., & Racherla, V. (2023). Design optimization of high interface strength metal-polymer-metal sandwich panels. Applied Science and Manufacturing, 171, 107544.
https://doi.org/10.1016/j.compositesa.2023.107544
[8] Huang, Y. M., & Daw, K. L. (1995). Finite-element simulation of the bending process of steel/polymer/steel laminate sheets. Journal of Materials Processing Technology, 52(2), 319-337.
https://doi.org/10.1016/0924-0136(94)01617-A
[10] Takiguchi, M., & Fusahito, Y. (2003). Deformation characteristics and delamination strength of adhesively bonded aluminum alloy sheet under plastic bending. JSME International Journal Series a Solid Mechanics and Material Engineering, 46(1), 68-75.
https://doi.org/10.1299/jsmea.46.68
[12] Compston, P., Cantwell, W. J., Cardew-Hall, M. J., Kalyanasundaram, S., & Mosse, L. (2004). Comparison of surface strain for stamp formed aluminum and an aluminum polypropylene laminate. Journal of Materials Science, 39(19), 6087-6088.
https://doi.org/10.1023/B:JMSC.0000041707.68685.72
[13] Young, K. S., Choi, W. J., & Park, S. Y. (2006). Spring-back characteristics of fiber metal laminate (GLARE) in brake forming process. The International Journal of Advanced Manufacturing Technology, 32(5-6), 445-451.
https://doi.org/10.1007/s00170-005-0355-8
[15] Parsa, M. H., & Ettehad, M. (2010). Experimental and finite element study on the spring back of double curved aluminum/polypropylene/aluminum sandwich sheet. Materials & Design, 31(9), 4174-4183.
https://doi.org/10.1016/j.matdes.2010.04.024
[16] Sokolova, O. A., Carradò, A., & Palkowski, H. (2011). Metal–polymer–metal sandwiches with local metal reinforcements: A study on formability by deep drawing and bending. Composite Structures, 94(1), 1-7.
https://doi.org/10.1016/j.compstruct.2011.08.013
[17] Liu, J. G., Wei, L. I. U., & Wang, J. N. (2012). Influence of interfacial adhesion strength on formability of AA5052/polyethylene/AA5052 sandwich sheet. Transactions of Nonferrous Metals Society of China, 22, s395-s401.
https://doi.org/10.1016/S1003-6326(12)61737-3
[18] Cheraghi, M., Adelkhani, A., & Attar, M. (2021). The experimental and numerical study of the effects of holding force, die radius, pin radius and pin distance on springback in a stretch bending test. Iranian Journal of Materials Forming, 8(2), 35-43.
https://doi.org/10.22099/IJMF.2021.39387.1172
[19] Keipour, S., & Gerdooei, M. (2019). Springback behavior of fiber metal laminates in hat-shaped draw bending process: experimental and numerical evaluation. The International Journal of Advanced Manufacturing Technology, 100, 1755-1765.
https://doi.org/10.1007/s00170-018-2766-3
[20] Jianguang, L. W. X. (2017). Unconstrained bending and springback behaviors of aluminum-polymer sandwich sheets. The International Journal of Advanced Manufacturing Technology, 91, 1517–1529.
https://doi.org/10.1007/s00170-016-9819-2
[21] He, W., Wang, C., Wang, S., Yao, L., Linfeng, W., & Xie, D. (2020). Characterizing and predicting the tensile mechanical behavior and failure mechanisms of notched FMLs—Combined with DIC and numerical. Composite Structures, 254, 112893.
https://doi.org/10.1016/j.compstruct.2020.112893
[22] American Society for Testing and Materials. (2000). Standard test method for tensile properties of polymer matrix composite materials (ASTM Standard No. D3039/D3039M-00). ASTM International.
[23] Ebrahim, S., Soheil, M. T., Mojtaba, S., & Pedram S. A. (2010). study on tensile properties of a novel fiber/metal laminates. Materials Science and Engineering, 527, 4920–4925.
https://doi.org/10.1016/j.msea.2010.04.028
[24] Boljanovic, V. (2014). Sheet metal forming processes and die design. Industrial Press.
[25] Santos, A., Córdoba, E., Ramírez, Z., Sierra, C., & Ortega, Y. (2017). Determination of the coefficient of dynamic friction between coatings of alumina and metallic materials. Journal of Physics, 935, 012042.
https://doi.org/10.1088/1742-6596/935/1/012042
[26] Gautam, V., Sharma, P., & Kumar, D. R. (2018). Experimental and numerical studies on springback in U-bending of 3-Ply cladded sheet metal. Materials Today: Proceedings, 5, 4421–4430.
https://doi.org/10.1016/j.matpr.2017.12.010
[27] Suchy, I. (2006). Handbook of die design (Vol. 1998). New York: McGraw-Hill.