Effect of Incremental Forming Parameters and Annealing Condition on Principal Strain Distribution and Formability During Straight Groove Forming

Document Type : Research Paper

Authors

Faculty of Mechanical Engineering, University of Kashan, Kashan, Iran

Abstract

Incremental forming is a highly flexible sheet metal forming process that enables the production of complex components without the need for specialized molds or dies. In this study, the effects of key process parameters—including tool rotational speed, vertical step size, annealing condition, and tool movement direction—on the formability of aluminum 3105H14 sheets were systematically investigated through experimental testing. A Taguchi design of experiments was employed to efficiently examine the influence of these parameters on the maximum forming depth, principal strain distribution, and thickness variation. The results indicate that vertical step size and annealing condition are the most significant factors affecting sheet formability. A maximum forming depth of 10.5 mm and a minimum sheet thickness of 0.584 mm were achieved with a vertical step size of 0.25 mm, spindle speed of 2000 rpm, and tool movement parallel to the rolling direction. Annealed sheets exhibited higher principal strains in intact regions, confirming the positive influence of heat treatment on material ductility. Furthermore, increasing spindle speed enhanced frictional heating, further improving material formability, while forming direction primarily affected strain distribution and localized thinning.

Keywords


[1] Popp, G. P., Racz, S. G., Breaz, R. E., Oleksik, V. Ș., Popp, M. O., Morar, D. E., Chicea, A. L., & Popp, I. O. (2024). State of the art in incremental forming: Process variants, tooling, industrial applications for complex part manufacturing and sustainability of the process. Materials, 17(23), 5811. https://doi.org/10.3390/ma17235811
[2] Cheng, Z., Li, Y., Xu, C., Liu, Y., Ghafoor, S., & Li, F. (2020). Incremental sheet forming towards biomedical implants: A review. Journal of Materials Research and Technology, 9(4), 7225-7251. https://doi.org/10.1016/j.jmrt.2020.04.096
[3] Oleksik, V., Trzepieciński, T., Szpunar, M., Chodoła, Ł., Ficek, D., & Szczęsny, I. (2021). Single-point incremental forming of titanium and titanium alloy sheets. Materials, 14(21), 6372. https://doi.org/10.3390/ma14216372
[4] Liu, J., Zhao, Y., Niu, Y., Cao, J., Zhang, L., & Zhao, Y. (2024). Optimization of redundant degrees of freedom in robotic flat-end milling based on dynamic response. Applied Sciences, 14(5), 1877. https://doi.org/10.3390/app14051877
[5] Khatir, F. A., Barzegari, M., Talebi-Ghadikolaee, H., & Seddighi, S. (2021). Integration of design of experiment and finite element method for the study of geometrical parameters in metallic bipolar plates for PEMFCs. International Journal of Hydrogen Energy, 46(79), 39469-39482. https://doi.org/10.1016/j.ijhydene.2021.05.211
[6] Talebi-Ghadikolaee, H., Elyasi, M., Shahgaldi, S., Seddighi, S., Kasaei, M. M., & da Silva, L. F. (2022). The effect of rubber hardness on the channel depth of the metallic bipolar plates fabricated by rubber pad forming. In Materials Design and Applications IV (pp. 123-133). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-031-18130-6_9
[7] Zeinali, M. S., Naeini, H. M., Talebi-Ghadikolaee, H., & Panahizadeh, V. (2022). Numerical and experimental investigation of fracture in roll forming process using Lou–Huh fracture criterion. Arabian Journal for Science and Engineering, 47(12), 15591-15602. https://doi.org/10.1007/s13369-022-06662-3
[8] Xu, J., Xu, X., Fan, Y., Xiao, J., He, R., & Zhang, J. (2023). The effect of differential lubrication and counter punch on hydroforming of 5A02 thin-walled aluminum alloy Y-shaped tube. The International Journal of Advanced Manufacturing Technology, 127, 2775–2784. https://doi.org/10.1007/s00170-023-11526-7
[9] Edward, L. (1967). Apparatus and process for incremental dieless forming. ed: Google Patents.
[10] Kitazawa, K., Wakabayashi, A., Murata, K., & Yaejima, K. (1996). Metal-flow phenomena in computerized numerically controlled incremental stretch-expanding of aluminum sheets. Keikinzoku, 46(2), 65-70. https://doi.org/10.2464/jilm.46.65
[11] Rezaei, H., & Honarpisheh, M. (2022). Experimental and numerical investigation of forming limit diagram of CP-Ti/St12 bimetal in the incremental forming process. Strength of Materials, 54(4), 681-694. https://doi.org/10.1007/s11223-022-00446-8
[12] Gheysarian, A., and M. Honarpisheh. (2019). Process parameters optimization of the explosive-welded Al/Cu bimetal in the incremental sheet metal forming process. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 43(1), 945-956. https://doi.org/10.1007/s40997-018-0205-6
[13] Alinaghian, Mahnoush, Iman Alinaghian, and Mohammad Honarpisheh. (2019). Residual stress measurement of single point incremental formed Al/Cu bimetal using incremental hole-drilling method. International Journal of Lightweight Materials and Manufacture 2(2), 131-139. https://doi.org/10.1016/j.ijlmm.2019.04.003
[14] Honarpisheh, M., M. Mohammadi Jobedar, and I. Alinaghian. (2018). Multi-response optimization on single-point incremental forming of hyperbolic shape Al-1050/Cu bimetal using response surface methodology. The International Journal of Advanced Manufacturing Technology 96(9), 3069-3080. https://doi.org/10.1007/s00170-018-1812-5
[15] Xu, D., Wu, W., Malhotra, R., Chen, J., Lu, B., & Cao, J. (2013). Mechanism investigation for the influence of tool rotation and laser surface texturing (LST) on formability in single point incremental forming. International Journal of Machine Tools and Manufacture, 73, 37-46. https://doi.org/10.1016/j.ijmachtools.2013.06.007
[16] Ghafoor, S., Y. Li, G. Zhao, J. Li, I. Ullah, and F. Li, (2022). Deformation characteristics and formability enhancement during ultrasonic-assisted multi-stage incremental sheet forming. Journal of Materials Research and Technology, 18, 1038-1054. https://doi.org/10.1016/j.jmrt.2022.03.036
[17] Shafeek, M., Namboothiri, V. N., & Raju, C. (2022). Formability analysis on titanium grade2 sheets in multi point incremental forming process. Materials Today: Proceedings, 65, 3814-3819. https://doi.org/10.1016/j.matpr.2022.06.578
[18] Kim, T., & Yang, D.-Y. (2000). Improvement of formability for the incremental sheet metal forming process, International Journal of Mechanical Sciences 42(7) 1271-1286. https://doi.org/10.1016/S0020-7403(99)00047-8
[19] Durante, M., Formisano, A., & Langella, A. (2011). Observations on the influence of tool-sheet contact conditions on an incremental forming process. Journal of Materials Engineering and Performance, 20, 941-946. https://doi.org/10.1007/s11665-010-9742-x
[20] Oraon, M., Mandal, S., & Sharma, V. (2021). Predicting the deformation force in the incremental sheet forming of AA3003, Materials Today: Proceedings 45, 5069-5073. https://doi.org/10.1016/j.matpr.2021.01.578
[21] Kumar, A., & Gulati, V. (2018). Experimental investigation and optimization of surface roughness in negative incremental forming, Measurement, 131, 419-430. https://doi.org/10.1016/j.measurement.2018.08.078
[22] Zhang, S., Li, K., Li, Z., Tang, G. H., & Qu, J. (2021, November). The Effect of process parameters on the springback of AZ31B Mg alloy in warm incremental sheet forming assisted with oil bath heating. In Advances in Intelligent Data Analysis and Applications: Proceeding of the Sixth Euro-China Conference on Intelligent Data Analysis and Applications, 15–18 October 2019, Arad, Romania (pp. 33-42). Singapore: Springer Singapore. https://doi.org/10.1007/978-981-16-5036-9_4
[23] Raju, C., Haloi, N., & Narayanan, C. S. (2017). Strain distribution and failure mode in single point incremental forming (SPIF) of multiple commercially pure aluminum sheets, Journal of Manufacturing Processes, 30, 328-335. https://doi.org/10.1016/j.jmapro.2017.09.033
[24] Baak, N., Garlich, M., Schmiedt, A., Bambach, M., & Walther, F. (2017). Characterization of residual stresses in austenitic disc springs induced by martensite formation during incremental forming using micromagnetic methods, Materials Testing, 59(4), 309-314. https://doi.org/10.3139/120.111012
[25] Siddiqi, M. U. R., Corney, J. R., Sivaswamy, G., Amir, M., & Bhattacharya, R. (2018). Design and validation of a fixture for positive incremental sheet forming, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 232(4) 629-643. https://doi.org/10.1177/0954405417703423
[26] Vahdani, M., Mirnia, M. J., Gorji, H., & Bakhshi-Jooybari, M. (2019). Experimental investigation of formability and surface finish into resistance single-point incremental forming of Ti–6Al–4V titanium alloy using Taguchi design, Transactions of the Indian Institute of Metals 72, 1031-1041. https://doi.org/10.1007/s12666-019-01577-4
[27] Frikha, S., Giraud-Moreau, L., Bouguecha, A., & Haddar, M. (2022). Simulation-based process design for asymmetric single-point incremental forming of individual titanium alloy hip cup prosthesis, Materials 15(10) 3442, 2022. https://doi.org/10.3390/ma15103442
[28] Yamashita, M., Gotoh, M., & Atsumi, S.-Y. (2008). Numerical simulation of incremental forming of sheet metal, Journal of Materials Processing Technology, 199(1-3), 163-172. https://doi.org/10.1016/j.jmatprotec.2007.07.037
[29] Li, Y., Zhai, W., Wang, Z., Li, X., Sun, L., Li, J., & Zhao, G. (2020). Investigation on the material flow and deformation behavior during ultrasonic-assisted incremental forming of straight grooves. Journal of Materials Research and Technology, 9(1), 433-454. https://doi.org/10.1016/j.jmrt.2019.10.072
[30] Cheng, Z., Li, Y., Li, J., Li, F., & Meehan, P. A. (2022). Ultrasonic assisted incremental sheet forming: Constitutive modeling and deformation analysis. Journal of Materials Processing Technology, 299, 117365. https://doi.org/10.1016/j.jmatprotec.2021.117365
[31] Najm, S. M., & Paniti, I. (2023). Investigation and machine learning-based prediction of parametric effects of single point incremental forming on pillow effect and wall profile of AlMn1Mg1 aluminum alloy sheets. Journal of Intelligent Manufacturing, 34(1), 331-367. https://doi.org/10.1007/s10845-022-02026-8
[32] Möllensiep, D., Detering, L., Kulessa, P., Steinhof, M., & Kuhlenkötter, B. (2024). Prediction of forming accuracy in incremental sheet forming using artificial neural networks on local surface representations. The International Journal of Advanced Manufacturing Technology, 133(9), 4923-4938. https://doi.org/10.1007/s00170-024-14023-7
[33] Rafat, M. T., Haapala, K. R., & Fan, Z. (2025). Experimental and numerical analysis of thinning in single point incremental sheet forming (SPIF) of an aluminum alloy (AA3003-H14). Journal of Manufacturing and Materials Processing, 9(9), 307. https://doi.org/10.3390/jmmp9090307
[34] Magrinho, J. P., Silva, M. B., & Martins, P. A. F. (2023). Experimental determination of the fracture forming limits in metal forming. Discover Mechanical Engineering, 2(1), 7. https://doi.org/10.1007/s44245-023-00015-6
[35] Wu, R., Hu, Q., Li, M., Cai, S., & Chen, J. (2021). Evaluation of the forming limit of incremental sheet forming based on ductile damage. Journal of Materials Processing Technology, 287, 116497. https://doi.org/10.1016/j.jmatprotec.2019.116497
[36] Mirnia, M. J., & Shamsari, M. (2017). Numerical prediction of failure in single point incremental forming using a phenomenological ductile fracture criterion. Journal of Materials Processing Technology, 244, 17-43. https://doi.org/10.1016/j.jmatprotec.2017.01.029
[37] Anderson, K., Weritz, J., & Kaufman, J. G. (Eds.). (2019). Properties and selection of aluminum alloys. ASM International.
[38] Wang, H., Wu, T., Wang, J., Li, J., & Jin, K. (2020). Experimental study on the incremental forming limit of the aluminum alloy AA2024 sheet. The International Journal of Advanced Manufacturing Technology, 108(11), 3507-3515. https://doi.org/10.1007/s00170-020-05613-2
[39] Zhu, H., Wang, Y., & Kang, J. (2021). The effect of extrusion direction on the forming quality in CNC incremental forming with multidirectional adjustment of sheet posture. Journal of Mechanical Science and Technology, 35(4), 1671-1679. https://doi.org/10.1007/s12206-021-0330-9
[40] Kilani, L., Mabrouki, T., Ayadi, M., Chermiti, H., & Belhadi, S. (2020). Effects of rolling ball tool parameters on roughness, sheet thinning, and forming force generated during SPIF process. The International Journal of Advanced Manufacturing Technology, 106(9), 4123-4142. https://doi.org/10.1007/s00170-019-04918-1
[41] Habbachi, M., Kovács, P. Z., & Baksa, A. (2025). Evaluation of thickness distribution during single point incremental forming of pure aluminum alloy Al1050. Key Engineering Materials, 1019, 21-27. https://doi.org/10.4028/p-WmDG1q